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Abstract. Feature modeling is a common way to present and manage variability 
of software and systems. As a prerequisite for effective variability management 
is comprehensible representation, the main aim of this paper is to investigate 
difficulties in understanding feature models. In particular, we focus on the com-
prehensibility of feature models as expressed in Common Variability Language 
(CVL), which was recommended for adoption as a standard by the Architectur-
al Board of the Object Management Group. Using an experimental approach 
with participants familiar and unfamiliar with feature modeling, we analyzed 
comprehensibility in terms of comprehension score, time spent to complete 
tasks, and perceived difficulty of different feature modeling constructs. The re-
sults showed that familiarity with feature modeling did not influence the com-
prehension of mandatory, optional, and alternative features, although unfamiliar 
modelers perceived these elements more difficult than familiar modelers. OR 
relations were perceived as difficult regardless of the familiarity level, while 
constraints were significantly better understood by familiar modelers. The time 
spent to complete tasks was higher for familiar modelers. 

Keywords: Variability analysis, Software Product Line Engineering, Model 
Comprehension. 

1 Introduction 

With the proliferation of software systems as an essential part of almost any business, 
their requirements increased and became more complex. Against this background, the 
variety of software artifacts has also heightened and a fundamental challenge is figur-
ing out how to manage this variety. One way to tackle these challenges is analyzing 
and representing variability. Variability is extensively studied in the field of Software 
Product Line Engineering [1, 2] which aims at supporting the development and main-
tenance of families of software products, termed software product lines.  

A systematic review published in 2011 [3] shows that variability management in 
software product lines is primarily done utilizing feature-oriented modeling. A feature 
diagram is a tree or graph that describes the end-user visible characteristics (features) 
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of systems in a software product line and the relationships and constraints (dependen-
cies) between them. Different feature-oriented languages have been proposed over the 
years. However, no standard feature-oriented modeling language has emerged yet. 
Recently, some initiatives in this direction started in the Object Management Group 
(OMG), yielding the submission of the Common Variability Language (CVL) pro-
posal [4]. CVL is a domain-independent language for specifying and resolving varia-
bility. It facilitates the specification and resolution of variability over any instance of 
a Meta-Object Facility (MOF)-based language (such an instance is termed a base 
model). Lately, CVL was recommended for adoption as a standard by the Architec-
tural Board of OMG. 

A prerequisite for effective variability management is comprehensible representa-
tion of variability. However, there are few empirical studies that analyze difficulties 
in understanding variability representations in general and feature diagrams in par-
ticular. To fill this gap, the main aim of this study was to examine the cognitive diffi-
culty of understanding variability in feature modeling. In order to address this chal-
lenge we conducted an exploratory study using CVL models, perceiving CVL as an 
emerging standard that uses feature-oriented principles for specifying and 
representing variability. We concentrate on the variability abstraction part of CVL, 
which provides constructs for specifying variability without defining the concrete 
consequences on the base model. We further seek to answer in this study how mod-
eler’s familiarity with feature modeling influences comprehension difficulties. Differ-
ences between novices and experts can point on specific problems in comprehension. 
In addition, it is of specific interest how the target user group of CVL, modelers who 
are familiar with feature modeling, comprehend CVL and can easily switch from 
feature models to CVL models, as comprehensibility of a new modeling language is 
an important basis for its acceptance in practice.  

The rest of the paper is structured as follows. Section 2 reviews the related work 
and provides the required background on CVL. Section 3 elaborates on the experi-
ment design and procedure, while Section 4 presents the analysis procedure and the 
results. Section 5 discusses the results and the threats to validity. Finally, Section 6 
summarizes and points on future research directions. 

2 Related Work and Background 

2.1 Comparison of Feature Modeling Languages 

Comparison of feature modeling languages is mainly done using classification 
frameworks or according to lists of characteristics. Istoan et al. [5], for example, sug-
gest a metamodel-based classification of variability modeling approaches: methods 
may use a single (unique) model to represent both commonality and variability or 
distinguish and keep separate the variability model from the base model. Methods that 
use a single model may annotate the base model by means of extensions or combine a 
general, reusable variability meta-model with different domain metamodels. Methods 
that use separate models specify the variability model using notations such as feature 
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diagrams, decision models, or CVL [4]. Istoan et al. further compared the artifacts of 
these methods in the metamodel and model levels. 

Czarnecki et al. [6] compared feature modeling and decision modeling along ten 
dimensions: applications, unit of variability (features vs. decisions), orthogonality, 
data types, hierarchy, dependencies and constraints, mapping to artifacts, binding time 
and mode, modularity, and tool aspects. They further showed how the main properties 
of feature modeling and decision modeling are reflected in three specific methods 
including an initial version of CVL. 

Schobbens et al. [7] surveyed and compared seven feature diagram notations. 
These notations differ in their graph types (trees vs. directed acyclic graphs – DAG), 
the supported node types (e.g., cardinality support), the supported graphical constraint 
types (namely, “requires”, “excludes”, none, or both), and the supported textual con-
straint types (i.e., textual composition rules support). In a later work, Heymans et al. 
[8] evaluated the formal properties of feature diagram languages using Krogstie et 
al.’s semiotic quality framework [9] and Harel and Rumpe’s guidelines for defining 
formal visual languages [10]. The list of evaluation criteria included: (1) expressive-
ness: what can the language express? (2) embeddability: can the structure of a dia-
gram be kept when translated to another language? and (3) succinctness: how big are 
the expressions of one and the same semantic object? 

Djebbi and Salinesi [11] provided a comparative survey on four feature diagram 
languages for requirements variability modeling. The languages are compared accord-
ing to a list of criteria that includes readability, simplicity and expressiveness, type 
distinction, documentation, dependencies, evolution, adaptability, scalability, support, 
unification, and standardizeability. 

Haugen et al. [12] proposed a reference model for comparing feature modeling ap-
proaches. This model makes distinction between the generic sphere, which includes 
feature models and product line models, and the specific sphere, which includes fea-
ture selection and product models. Standard languages, annotations, and special do-
main-specific languages are compared based on this reference model.  

Comparing product line architecture design methods, Matinlassi [13] suggested an 
evaluation framework that is based on Normative Information Model-based Systems 
Analysis and Design (NIMSAD) [14]. According to this framework, there are four 
essential categories of elements for method evaluation: (1) context, including specific 
goals, product line aspects, application domains, and methods inputs/outputs; (2) user, 
including target groups, motivation, needed skills, and guidance; (3) contents, includ-
ing method structure, artifacts, architectural viewpoints, language, variability, and 
tool support; and (4) validation, including method maturity and architecture quality.  

All the above studies concentrate on the expressiveness of the compared languages, 
while usability-related issues follow a “feature comparison” approach. The drawback 
of such an approach is the subjectivity in developing both the comparison checklist 
and its interpretation. In addition, the above studies neglect comprehensibility, which 
is an important issue in modeling, as the abstract goal of modeling is to formally de-
scribe some aspects of the physical and social world around us for the purpose of 
understanding and communication [15].  
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Recent research has started to examine comprehensibility aspects of variability 
modeling languages. The work in [8] looks into comprehensibility appropriateness, 
namely whether or not language users understand all possible statements of the lan-
guage. Comprehensibility appropriateness is, however, handled subjectively through 
embeddability and succinctness. 

Conducting two experiments, Reinhartz-Berger and Tsoury [16, 17] compared the 
comprehensibility of Cardinality-Based Feature Modeling (CBFM) [18] and Applica-
tion-based DOmain Modeling (ADOM) [19]. The comparison is based on compre-
hensibility of commonality- and variability-related concepts, including mandatory and 
optional elements, dependencies, variation points and variants. The experiments were 
conducted with small numbers of participants with similar background and expe-
rience. Accordingly, the conclusions were limited and concentrated on the differences 
between the methods: the feature-oriented CBFM and the UML-based ADOM.  

To summarize, comprehensibility of feature modeling languages still needs to be 
assessed empirically. To fill this gap, we concentrate in this study on identifying diffi-
culties in understanding feature models expressed in CVL. Next, we briefly present 
CVL. 

2.2 Common Variability Lanaguge (CVL) 

As noted, CVL facilitates the specification and resolution of variability over any base 
model defined by a metamodel. Its architecture consists of variability abstraction and 
variability realization. Variability abstraction supports modeling and resolving varia-
bility without referring to the exact nature of the variability with respect to the base 
model. Variability realization, on the other hand, supports modifying the base model 
during the process of transforming the base model into a product model.  

In this study, which concentrates on the variability abstraction part of CVL, the 
main examined concepts are VSpecs (variability specifications), their relationships, 
and constraints. VSpecs are technically similar to features in feature modeling and can 
be divided into four subclasses: (1) choices – require yes/no decisions, (2) variables – 
require providing values of specified types, (3) VClassifier (variability classifiers) – 
require creating instances and resolving their variability, and (4) CVSpec – composite 
VSpecs. The VSpecs are organized in trees that represent logical constraints on their 
resolutions (configurations). VSpec children are related to their parents higher in the 
tree in two different ways: (1) Mandatory or optional: The positive resolution of a 
child may be determined by the resolution of the parent (mandatory) or can be inde-
pendently determined (optional).  (2) Group multiplicity: A range is given to specify 
how many total positive resolutions must be found among the children: 
XOR/alternative – exactly one, OR – at least one.  

Finally, constraints express dependencies between elements of the variability 
model that go beyond what is captured in the tree structure. Two types of constraints 
are primarily supported in CVL: (1) A implies B – if A is selected, then B should be 
selected too (this constraint is known as “requires” in feature modeling), and (2) Not 
(A and B) – if A is selected, then B should not be selected and vice versa (this con-
straint is known as “excludes” in feature modeling). 
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As an example, consider Fig. 4(a) in the appendix. This figure describes the al-
lowed variability in Skoda Yeti cars, a sport utility vehicle model of Skoda: the fuel 
of these cars is either diesel or benzin; the gear is either manual or automatic; the 
drive is either 2-weel-drive or 4x4; and the gadget level is either active or adventure. 
These configurations are further restricted by the constraints, e.g., a Skoda Yeti car 
whose gadget level is active and its fuel is diesel must have a manual gear (i.e., it 
cannot have an automatic gear). Fig. 4(b) further elaborates on the possible configura-
tions of extra features in Skoda Yeti cars: such a car may have heated front pane, 
sunset, or panorama roof; it may have parking heater; and it may have styling package 
(and if so it may also have offroad styling).  

3 Experiment Design and Procedure  

3.1 Research Goal 

Following Wohlin et al.’s guidelines [20], the goal of our exploratory study was to: 
Analyze the effect of feature modeling familiarity on the comprehension difficulties 

of CVL, an emerging common variability language;  
For the purpose of evaluation; 
With respect to comprehension score in terms of percentage of correct solution, time 

spent to complete tasks, and participants’ perception of difficulty; 
From the point of view of modelers;  
In the context of students of information systems, informatics and business. 

3.2 Research Planning and Design 

We derived from the above goal the following research questions and settings:  
RQ1: Are there differences in the difficulty to comprehend CVL models for modelers 
who are familiar with feature modeling in general, in comparison to those who are 
unfamiliar with it? 

To answer this research question we followed a quasi-experimental between-
subject design. We classified participants into two distinct groups: participants famili-
ar/unfamiliar with feature modeling. The exact classification procedure is explained in 
Section 3.6. The independent variable in this case was familiarity with feature model-
ing, while the dependent variables were comprehension scores (measured using the 
percentage of correct solution), time spent to complete tasks, and difficulty perception 
using self-rated difficulty of specific element types. 

There is a long tradition of researching domain familiarity in terms of expert-
novice differences in the area of system development. Petre [21] has argued that  
“experts ‘see’ differently and use different strategies than novice graphical program-
mers”. Prior research has revealed that experts develop language-independent, ab-
stract problem representations, so-called schemas, which make similar tasks for them 
easier. In light of these theoretical considerations we conjecture that comprehending 
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CVL models should be easier for modelers who are familiar with feature modeling. 
We hypothesize that as follows: 
H1a. Familiarity with feature modeling will be positively associated with the com-
prehension score. 
H1b.  Familiarity with feature modeling will be positively associated with the time 
spent to complete tasks. 
H1c. Familiarity with feature modeling will be negatively associated with the per-
ceived difficulty of specific feature modeling constructs. 

The second research question is divided into the following two parts: 
RQ2a: Which feature modeling constructs are difficult to understand?  
RQ2b: Are there specific difficulties in comprehending CVL models for modelers 
who are familiar with feature modeling, in comparison to those who are unfamiliar 
with it? 

To answer the second research question we used a within-subjects design. The se-
lected independent variable was element type, namely mandatory, optional, and alter-
native (XOR) features, as well as OR relations and feature constraints (dependencies). 
The dependent variables were comprehension score, time spent, and self-rated diffi-
culty of the specific feature modeling elements. As it is not possible to construct com-
prehension tasks that only demand the understanding of “basic” elements, namely, 
mandatory, optional, and alternative features, we could only assess their subjective, 
but not their objective, difficulty. However, it was possible to objectively determine 
comprehension score and time to complete tasks related to OR relations and con-
straints. 

We refrain from hypothesis development for the second research question, as it 
would not be helpful in such an exploratory setting [22]. While a considerable amount 
of literature has been published on expert-novice difference in general (RQ1), no 
research has been conducted on the comprehension of specific feature modeling con-
structs (RQ2) up to now. To our knowledge this is the first study evaluating compre-
hension of CVL, thus there is neither an adequate empirical nor a theoretical basis 
available to formulate a priori hypotheses. 

3.3 Experimental Material  

The objects of the experiment were two CVL models describing different sets of fea-
tures of Skoda Yeti cars. The CVL models for the experiment were built by Prof. 
Haugen, who is the founder of CVL and is familiar with the possible Skoda Yeti con-
figurations from the Norwegian Skoda public web pages. The first model (see Fig. 4a 
in the appendix), named “basic”, describes basic features of Skoda Yeti. It includes 
mandatory and alternative features (using XOR relations), as well as four “implies” 
(“requires”) constraints. The number of valid configurations is 6. The second model 
(see Fig. 4b in the appendix), named “expanded”, describes advanced (extra) features. 
It includes optional features and an OR relationship, as well as two “excludes” con-
straints (phrased as “not (A and B)”). The number of valid configurations in this case 
is much higher. 
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3.4 Tasks  

The tasks were embedded within an online questionnaire. On each model ten ques-
tions were asked, examining whether specific configurations of Skoda Yeti are al-
lowed according to the model. These questions can be described as surface-level tasks 
which measure comprehension of models more directly than deep-level tasks, which 
require participants to work with the models in a usage context [23]. For our research 
goal of checking the comprehensibility of a relatively new language, surface-level 
model comprehension tasks are most appropriate.  

The participants were presented with the model and one question at a time. They 
had to choose between the following answers: Correct, Wrong, Cannot be answered 
from model, I don’t know. After answering a question, the participant proceeded to 
the next question, but could not return to previous questions. This way we could 
measure the time needed to answer an individual question. The questions used in the 
experiment appear in the appendix. 

3.5 Procedure  

The participants were requested to open the online questionnaire. There, they had to 
fill first a pre-questionnaire that was composed of two parts. The purpose of the first 
part of the pre-questionnaire was to obtain general information about the participants 
and their background, including age, gender, degree and subject of studies, and fami-
liarity with feature modeling. To measure self-rated familiarity with feature modeling, 
which was one of the independent variables, we adopted the three-item modeling 
grammar familiarity scale of Recker [24]: (1) Overall, I am very familiar with feature 
diagrams; (2) I feel very confident in understanding feature diagrams; (3) I feel very 
competent in modeling feature diagrams.  

The second part of the pre-questionnaire aimed to objectively examine the prior 
knowledge of the participants in modeling. This part included three models in three 
languages: ER, BPMN, and feature diagrams. The participants had to state in which 
language each model was specified and answer three comprehension questions about 
the models. Each question presented a statement and four possible answers: Correct, 
Wrong, Cannot be answered from model, I don’t know.  

After filling the pre-questionnaire, the participants were presented with slides ex-
plaining and exemplifying the variability abstraction part of CVL (the participants 
also got hard-copies of these slides which they could consult while answering the 
questions). The participants had to study CVL variability abstraction part on their own 
from the slides and proceed to the main questionnaire. The main questionnaire in-
cluded two CVL models of Skoda Yeti cars and two sets of questions, each of which 
referred to a different model (basic vs. expanded). To avoid any order effects due to 
fading attention, we used two different samplings of the main questionnaire, in which 
models were arranged in a different sequence. As noted, the models and questions of 
the main questionnaire appear in the appendix.  

The time spent on each question was recorded by the online questionnaire. No rigid 
time constraints were imposed on the participants. 
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After completing the questions on each model, the participants had to fill a post-
part questionnaire that collected feedback on the tasks and the difficulty to understand 
different model elements (mandatory and optional features, XOR and OR relations). 
The answering options ranged from 1=very easy to 7=very difficult. In addition, the 
participants could report on difficulties they experienced in open text fields.  

3.6 Participants  

Participants were recruited from three different classes from information systems, 
informatics and business curricula with prior training in modeling. Indeed, it can be 
argued that using students to evaluate a language that aimed at software professionals 
is problematic, but it has been shown in [25] that students have a good understanding 
of the way industry behaves, and may work well as subjects in empirical studies in 
specific areas, such as requirements engineering. Additionally, students are a relative-
ly homogenous group concerning knowledge about and experience with conceptual 
modeling [26].  

The executions of the experiment took place in the spring semester of 2013 in 
three courses that deal with modeling in the University of Haifa, the Vienna Universi-
ty of Economics and Business, and the University of Oslo. To assure sufficient moti-
vation, the experiment was defined as an obligatory exercise or participants received 
approximately 5% course credit for participating. A total of 38 students participated in 
the study.  

We now turn to the categorization of participants as familiar/unfamiliar with fea-
ture modeling. Since CVL is a relatively new language there are so far no “experts”, 
however familiarity with feature modeling can serve as an adequate proxy. We use an 
extreme group selection approach to define two clearly distinct groups on the conti-
nuous variable familiarity in order to heighten power of statistical tests [27]. 15 par-
ticipants were categorized as not familiar with feature modeling. They had answered 
the question “are you familiar with feature diagrams?” negatively. Regarding those 
who had answered this question affirmatively, we crosschecked the mean score of the 
scale familiarity with feature diagrams (3 items). We also assessed the reliability of 
this scale, which was adequate (Cronbach’s alpha = 0.96). According to Nunnally and 
Bernstein [28] Cronbach’s alpha should be higher than 0.8 to combine items in a 
mean value. The answering options for this scale ranged from 1=strongly disagree to 
7=strongly agree. We concluded that only participants with a mean threshold value  
of 3.5 for this scale could be regarded as “familiar”. Based on this criterion, 6 partici-
pants were excluded. In addition we checked whether all of these “familiar” partici-
pants also had correctly identified the figure of the feature diagram in the  
pre-questionnaire. This objective test led to further exclusion of one participant. 
Overall 7 participants were excluded as they were neither unfamiliar nor sufficiently 
familiar with feature modeling, resulting in 16 participants who were categorized as 
familiar with feature modeling. The final sample consisted of 31 participants: 22 
males (58%) and 16 females (42%) with a mean age of 28 years. 
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Table 1. Differences in participants’ skills 

 Unfamiliar with  
feature modeling (n=15) 

Familiar with  
feature modeling (n=16) 

Statistical 
Test 

Mean SD Mean SD 
Feature modeling test 
score (3 points possible) 

1.20 0.77 2.13 0.89 Tdf=29=-3.09 
p=0.00 

Modeling score test (8 
points possible) 

4.00  1.25  4.19  0.91 Tdf=29=-0.48 
p=0.64 

 
We performed t-tests to demonstrate differences between the groups (see Table 1 

for detailed results). As expected, participants of the familiar group scored better in 
the feature modeling test, while no significant differences in the modeling pre-test 
were found. This means that the students in the unfamiliar group were familiar with 
modeling in general, but unfamiliar with feature modeling and these differences may 
affect their difficulties in comprehending CVL models. 

4 Analysis Procedure and Experiment Results 

Data analysis was performed using SPSS 19. We first present the effects of familiarity 
with feature modeling on comprehension. We then refer to difficulties to comprehend 
specific model elements. Finally, we present results on comprehension difficulties as 
perceived and reported by the participants. 

4.1 Comprehension and Familiarity with Feature Modeling   

To answer the first research question (RQ1: Are there differences in the difficulty to 
comprehend CVL models for modelers who are familiar with feature modeling in 
general, in comparison to those who are unfamiliar with it?), we performed an 
analysis of covariance (ANCOVA) for repeated measures (basic and expanded 
models) for each dependent variable (comprehension score and time spent). The 
independent variable was familiarity with feature modeling (familiar vs. unfamiliar). 
Familiarity had a significant influence on the comprehension score (F=2.60, p=0.01). 
Participants familiar with feature modeling achieved a comprehension score of 85% 
on average, while unfamiliar participants achieved only 69%, lending support to H1a, 
which had predicted a positive association between familiarity and comprehension 
score. In addition, the interaction effect of familiarity and model (basic vs. expanded) 
was significant (F=9.68, p=0.00). As can be seen in Fig. 1 there was almost no 
performance difference between familiar and unfamiliar modelers in the expanded 
model, but a clear difference in the basic model. As noted, the basic model included 
only XOR relations and mandatory features, as well as “implies” (“requires”)  
constraints, while the expanded model included an OR relation and “excludes” con-
straints. H1a can only be partially supported in case of the basic model.  

There was also a significant influence of familiarity on time (F=5.39, p=0.03). 
Contrary to our expectations, however, participants familiar with feature modeling 
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took more time to complete tasks (418 seconds vs. 298 seconds). Thus, H1b could not 
be supported, i.e., familiarity is negatively associated with time spent.  

To control for possible order effects, we had included a second independent 
variable in the analyses – model order – which represents the order in which models 
were presented to the participants. Model order had two values: ‘basic first’ – the 
basic model was presented first and ‘basic later’ – the expanded model was presented 
first. We found that the model order did not have any significant effect on the 
comprehension score, but it influenced the time spent; there was a significant 
interaction effect of model (basic vs. expanded) and model order (F=9.00, p=0.01). 
Participants spent more time on answering questions on the first model they were 
presented with than for the second model. 
 

  

Fig. 1. Familiarity and Comprehension of Basic and Expanded Models 

4.2 Difficulties to Comprehend Specific Model Elements 

In order to answer the second research question (Which feature modeling constructs 
are difficult to understand? Are there specific difficulties in comprehending CVL for 
modelers who are familiar with feature modeling, in comparison to those who are 
unfamiliar with it?), we identified two model elements which could be addressed in 
seperation from other elements via comprehension tasks and whose comprehension 
deserve special attention: constraints and OR relations. 

To check whether comprehension tasks which demand understanding of con-
straints in general are more difficult to understand than tasks without constraints, we 
performed again ANCOVAS. Overall, there was no difference between the compre-
hension of questions which involved constraints (79% correctness) and questions 
which did not involve constraints (81%). However, participants spent more time to 
solve questions without constraints (43 seconds) than with constraints (25 seconds; 
F=26.20, p=0.00). Familiarity has a significant influence on comprehension score 
(F=5.29, p=0.03) and time spent (F=4.74, p=0.04) as already reported in the prior 
analysis. We further observed that there is a significant interaction effect of familiari-
ty and the existence of constraints (F=4.76, p=0.04) on comprehension score. As can 
be seen in Fig. 2 below, there is a larger performance difference of comprehension for 
questions involving constraints. While participants familiar with feature modeling 
achieved an average comprehension score of 90% on questions involving constraints, 
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unfamiliar participants achieved only 67%. The difference in questions not involving 
constraints is smaller (84% vs. 78%, respectively). These results strengthen support 
for H1a (familiarity is positively associated with the comprehension score) in case 
constraints are involved. 

 

 

Fig. 2. Familiarity and Comprehension of Constraints 

Another worth-mentioning result refers to OR relations, which were only included 
in the expanded model. We grouped questions according to the semantics of the OR 
relation: none – no option appears in the question, one – exactly one option appears, 
and many – two or more options appear. Comparisons between the three groups were 
analyzed with ANCOVAS. We found significant main effects of OR relations on 
comprehension score (F=3.18, p=0.05) and time spent (F=8.53, p=0.00). As can be 
seen in Fig. 3, questions including no option (‘none’) were the easiest for both groups. 
Questions including no option (‘none’) took on average most time (40 seconds), fol-
lowed by one option selection (‘one’, 48 seconds) and multiple selections (‘many’, 26 
seconds). The analysis further showed that for those tasks from the expanded model 
familiarity had no effect on the comprehension score, but on time, as discussed in the 
previous section. There were no significant interaction effects with familiarity. 

 

 

Fig. 3. Familiarity and Comprehension of OR Relations 

4.3 Perceived Comprehension Difficulties 

To find out whether familiarity with feature modeling changed the difficulties partici-
pants experienced, we performed a series of t-tests. Table 2 gives descriptive statistics 
and the details of the analyses. Note, we used 7-point scale for these items, with 
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1=very easy and 7=very difficult. Basic elements, namely, mandatory, optional, and 
alternative (XOR) features, were rated significantly more difficult by participants 
having no prior experience with feature models. There was no difference between the 
groups for the difficulty rating of OR relations, which were only included in the ex-
panded model. As familiarity was associated negatively with perceived difficulty of 
specific feature modeling constructs in 4 of 5 cases (the gray rows in the table), the 
results lend support to H1c. 

Regarding constraints, participants mentioned difficulties in the open text fields. 
Participants of the unfamiliar group mentioned that “learning and mapping constraints 
were a little [bit] difficult”. Participants of the familiar group mentioned that “the 
‘implies’ relationships were fairly difficult to understand” and “the NOT (A and B) 
[constraint] was difficult without [an] example” (although an example of such a con-
straint was included in the CVL slides). One participant of the familiar group also 
stated that “the constraints helped understand the model's intent very clearly”. The 
participants further mentioned difficulties that we had not explicitly asked for, includ-
ing the unclear meaning of parent-child relations in the feature tree (“It’s hard to un-
derstand if feature can be used without his parent”) and the lack of explicitness of all 
feature combinations (“Many combinations were not specified directly in the model“). 

Table 2. Comprehension difficulties as reported by the participants 

  Unfamiliar with 
feature modeling 

Familiar with 
feature modeling 

Total t p 
 

M SD M SD M SD 
mandatory features 
(basic model) 

3.40 1.55 2.13 0.72 2.74 1.34 2.91 0.01 

optional features 
(basic model) 

3.67 1.63 2.19 0.83 2.90 1.47 3.14 0.00 

optional features 
(expanded model) 

3.33 1.35 2.31 1.01 2.81 1.28 2.40 0.02 

XOR relations 
(basic model) 

3.27 1.67 2.13 0.72 2.68 1.38 2.45 0.02 

OR relations 
(expanded model) 

3.07 1.39 2.56 1.09 2.81 1.25 1.13 0.27 

5 Discussion and Threats to Validity 

This study set out with the aim of assessing the comprehensibility of feature models 
expressed in CVL and identifying differences in comprehension difficulty for mod-
elers familiar or unfamiliar with feature modeling principles. It was hypothesized that 
participants familiar with feature modeling would comprehend CVL models better 
and faster and experience less difficulties. And indeed, the results showed that com-
prehension score was higher and perceived difficulty lower for familiar modelers. 
This result is in line with findings of [29] who showed that familiarity with models in 
a specific domain also enables modelers to understand a new modeling language in 
that domain faster and with less effort. 
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It is interesting to note that the performance difference for familiar modelers was 
higher for the model which mainly included XOR relations than the second CVL 
model which included an OR relation. A possible explanation for this result is that  
OR relations in general are difficult to understand and that familiarity with feature 
modeling not necessarily trains modelers in understanding OR relations nor enables a 
cognitive advantage for understanding this construct. Further findings support this 
interpretation, because familiar and unfamiliar modelers subjectively rated the diffi-
culty of OR relations similarly and while multiple selections (‘many’) were more 
difficult than ‘one’ or ‘none’ OR selections, familiarity did not interact with the com-
prehension of OR relations. Research findings on deductive reasoning with natural 
language connectives provide a theoretical explanation for the high cognitive difficul-
ty of inclusive ORs. “OR” is likely to be misinterpreted in its exclusive form, not as 
an inclusive OR-operator [30]. Based on empirically detected comprehension difficul-
ties, other model domains as process modeling have advised in modeling guidelines to 
avoid inclusive OR gateways altogether [31]. While this option is not feasibility for 
the area of feature modeling, still our results can be used to adopt training material 
and to inform modeling practitioners to be cautious in case of OR relations. 

In addition, familiar modelers had a clear advantage in understanding textual con-
straints in CVL models in comparison to unfamiliar modelers. The observed differ-
ence could be attributed to the familiarity of the modelers with feature modeling. An 
implication of this result for modeling practice includes the need to put a specific 
emphasis on making constraints easier to understand for novice modelers. A possibili-
ty to achieve this goal might be to place textual constraints spatially close to respec-
tive features in the model, thus following the spatial contiguity rule [32]  if possible. 
Indeed, the currently developed CVL tool supports associating constraints closely to 
the relevant features. 

Unexpectedly, familiarity with feature modeling was negatively related to time. 
This result might sound counterintuitive at first sight, however there are possible in-
terpretations. Knowing the notation may increase the doubts, requiring more time and 
not necessarily improving the performance. Participants might also be more motivated 
to solve the comprehension tasks correctly and work harder and longer to solve them 
if they already have prior experience in that modeling domain. Furthermore, unfami-
liar modelers have lower comprehension of OR relations and constraints than familiar 
modelers, but familiar modelers spent long time to achieve their better comprehen-
sion. This may be due to the perception of familiar modelers that OR relations and 
constraints are more difficult – a perception that made them spend more time on those 
questions. This is similar to experienced drivers who slow down properly in curves. 

As with all studies, the reader should bear in mind that a number of limitations as-
sociated with laboratory experiments need to be acknowledged [20]. One source of 
weakness regarding external validity includes the use of student subjects. However, 
the participants had received training in modeling and, therefore, we do believe that 
they serve as an adequate proxy for future modelers of CVL. In addition, we assured 
that random influences to the experimental setting were low to improve conclusion  
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validity. First, participants were committed to the experiment by making the experi-
ment an obligatory exercise or giving course credit (of about 5%) for participation. 
Second, the students self-studied CVL, so no influence of the lecturers’ capabilities, 
knowledge, and opinions were introduced to the CVL training.  

Despite the clear support for the hypothesized associations, the generalizability of 
findings reported here should be undertaken with caution, because we could only 
include two different CVL models in the study and we selected a specific feature 
modeling language – the variability abstraction part of CVL. As the two models in-
cluded in the questionnaire were typical representatives we argue that they provided a 
reasonable test of comprehensibility, thus, assuring construct validity. The selection 
of the language was done perceiving CVL as an emerging standard which systemati-
cally includes the main feature modeling concepts. However, only further experi-
ments with other feature modeling languages and models can confirm or disconfirm 
the generalizability of our results. 

6 Conclusions and Future Work  

The purpose of the current study was to determine comprehensibility of feature mod-
els as expressed in CVL and possible difficulties for different user groups. We found 
that familiarity with feature modeling did not influence the comprehension of basic 
elements, namely mandatory, optional, and alternative features, although unfamiliar 
modelers perceived these elements more difficult than familiar modelers. OR relations 
were perceived as difficult regardless of the familiarity level, while constraints were 
significantly better understood by familiar modelers. The time spent to complete tasks 
was higher for familiar modelers. The findings from this study add to the current body 
of knowledge on feature modeling by investigating comprehension and have relevant 
implications for practice and research. The results further add to a growing body of 
literature on novice-expert differences in modeling research. Our results also offer 
important suggestions for training in feature modeling. While understanding of man-
datory and optional features, constraints and XOR relations is important in the train-
ing of users new to feature modeling, understanding of OR relations remains difficult 
even for experienced modelers. In addition, results can be used to guide feature mod-
eling language developers in their design efforts and help in ongoing revision of CVL. 
Our initial results provide evidence that CVL is comprehensible for novice and expert 
modelers and that they can read such models after a short training.  

Several opportunities for future research emerge from our study. For instance, fur-
ther experimental investigations with a larger variety of models would be required to 
estimate comprehension difficulty of specific modeling elements. Future studies could 
also extend this work and examine difficulties in modeling (and not just understand-
ing) variability using CVL. Finally, comprehension difficulties can be researched in 
additional feature modeling languages, as well as in the variability realization part of 
CVL. 
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Fig. 4. The CVL models use
model 

 Basic Model Questions 
A Skoda Yeti car can have the
1. Manual and Diesel 
2. Adventure and Benzin 
3. Automatic and 4x4 
4. Adventure and 2-wheel-dri
5. Active and Diesel and Aut
ic 
6. Diesel and Automatic and 4
7. Active and Benzin and 4x4
8. Adventure and Manual and

9. Active and Benzin and M
and 2-wheel-drive 
10. Automatic and Adventure
Benzin and 2-wheel-drive 
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Models and Questions 

 

 

 

Legend: 

 Feature (VSpec

 Mandatory 

 Optional 

          1..1 XOR 

          1..* OR 

ed in the experiment: (a) the basic model and (b) the expan

Expanded Model Questions
e following combination of features: 

1. Parking-Heater and Styling-Package 
2. Panorama-Roof and Offroad-Styling 
3. Parking-Heater and Offroad-Styling 

ve 4. Parking-Heater and Heated-Front-Pane 
tomat- 5. Parking-Heater and Styling-Package and Offro

Styling 
4x4 6. Sunset and Parking-Heater and Styling-Package 

4 7. Heated-Front-Pane and Sunset and Panorama-Roof 
d 4x4 8. Sunset and Panorama-Roof and Parking-Heater and

Offroad-Styling 
Manual 9. Heated-Front-Pane and Sunset and Styling-Pack

and Offroad-Styling 
e and 10. Heated-Front-Pane and Sunset and Panorama-Roo

and Styling-Package 
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