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ABSTRACT 
As the complexity and variety of systems and software products 
have increased, the ability to manage their variability effectively 
and efficiently became crucial. To this end, variability can be 
specified either as an integral part of the development artifacts 
or in a separate orthogonal variability model. Lately, orthogonal 
variability models attract a lot of attention due to the fact that 
they do not require changing the complexity of the development 
artifacts and can be used in conjunction with different 
development artifacts. Despite this attention and to the best of 
our knowledge, no empirical study examined the 
comprehensibility of orthogonal variability models. 
In this work, we conducted an exploratory experiment to 
examine potential comprehension problems in two common 
orthogonal variability modeling languages, namely, Common 
Variability Language (CVL) and Orthogonal Variability Model 
(OVM). We examined the comprehensibility of the variability 
models and their relations to the development artifacts for 
novice users. To measure comprehensibility we used 
comprehension score (i.e., percentage of correct solution), time 
spent to complete tasks, and participants’ perception of 
difficulty of different model constructs. The results showed high 
comprehensibility of the variability models, but low 
comprehensibility of the relations between the variability 
models and the development artifacts. Although the 
comprehensibility of CVL and OVM was similar in terms of 
comprehension score and time spent to complete tasks, novice 
users perceived OVM as more difficult to comprehend. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 
languages; D.2.13 [Software Engineering]: Reusable Software 
– domain engineering  

General Terms 
Experimentation, Languages, Human Factors 

Keywords 
Variability analysis, Model Comprehension, Empirical Study, 
CVL, OVM 

1. INTRODUCTION 
Software systems are an essential part of almost any business. 
Independently, their requirements increased and became more 
complex, raising variability management challenges. Variability 
can be specified either as an integral part of the development 
artifacts or in a separate orthogonal variability model [24]. The 
former way commonly yield annotation-based approaches, in 
which the development artifacts are marked (annotated) 
introducing variability-related aspects. Examples of such 
methods are presented in [8; 26; 37]. Among the shortcomings 
of this kind of modeling approaches, Pohl et al. [24] mention: 
(1) consistency problems arising from the fact that variability 
may be spread across different models; (2) difficulties to trace 
variability across different development stages; (3) increasing 
complexity of the development artifacts, which are commonly 
complex without introducing variability; (4) differences in the 
concepts used to define variability between different 
development artifacts; and (5) ambiguity in variability 
information. 
To overcome the aforementioned shortcomings, orthogonal 
variability modeling promotes specifying variability in separate 
models which are linked to the development artifacts, termed 
base models. Two such languages are Orthogonal Variability 
Model (OVM) and Common Variability Language (CVL). 
OVM [24] aims at representing variability as first class models, 
through the concepts of variation point and variant. A variation 
point represents a variable item or a property of an item, while a 
variant defines different instances of the variable item or 
property. Trace links relate variability information to elements 
in the base models that are affected by the variability. OVM 
supports specifying the base models in a variety of languages, 
including natural languages and UML. CVL [10], a proposal for 
a standard submitted to Object Management Group (OMG), is a 
domain-independent language for specifying and resolving 
variability. It facilitates the specification and resolution of 
variability over base models specified in any Meta-Object 
Facility (MOF)-based language (such as UML and SysML). One 
of the main concepts in CVL is VSpec, which stands for 
variability specification. VSpecs are specifications of abstract 
variability and are similar to features in feature modeling. They 
are organized in trees representing logical constraints on their 
resolutions. The relationships between elements of the 
variability model and elements of the base model are specified 
via different types of variation points, e.g., object existence, 
which indicates that the existence of a particular object, link, or 
value in the base model is in question. 
In both OVM and CVL, one can specify in variability models 
mandatory and optional elements, OR and XOR relations 
between elements, and constraints (e.g., “requires”/”implies” 
and “excludes” dependencies). In both languages, the variability 
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models are linked to base models. However, these languages 
differ in several aspects: (1) variability models in CVL are 
structured as trees, while variability models in OVM have no 
hierarchical tree structure; (2) CVL enables specifying common 
and variable aspects of software products, while OVM 
concentrates on variability modeling; (3) OVM diffrentiates 
between variation points and variants in the specification level, 
while CVL does it only when resolving variability; (4) the 
relationships between variability models and base models are 
specified as links in OVM and as objects in CVL; and (5) small 
differences in the concrete syntaxes of the languages exist. 
Despite the attention that orthogonal variability modeling 
receives, there may be difficulties in understanding the different 
involved models, namely, variability models and base models, 
as well as the relations between the two types. To the best of our 
knowledge, no empirical studies analyze such difficulties, 
raising points for improving those languages. To fill this gap, the 
main aim of this study was to examine the cognitive difficulty of 
understanding orthogonal variability models. In particular, we 
conducted an exploratory experiment using OVM and CVL as 
examples of orthogonal variability modeling languages and 
examined the comprehensibility of the variability models and 
their relations to the base models in both languages. In both 
cases the base models were specified in standard UML class 
diagrams and, hence, the comprehensibility of the base models 
was left out of the experiment scope. 
The paper proceeds as follows. Section 2 reviews related work. 
Section 3 elaborates on the experiment design and procedure, 
while Section 4 presents the analysis procedure and the results. 
Section 5 discusses the results and the threats to validity. 
Finally, Section 6 summarizes and points on future research 
directions. 

2. RELATED WORK 
Since orthogonal variability modeling is quite new, the literature 
about evaluating orthogonal variability models is reduced. Thus, 
we review in this section studies that compare to some extent 
variability modeling languages in general, including feature 
diagrams. 
Several frameworks for evaluating, comparing, or classifying 
feature or variability modeling methods have been suggested. 
Istoan et al. [14], for example, primarily distinguish between 
methods that use a single (unique) model to represent both 
commonality and variability and methods that distinguish and 
keep the variability model separate from the base model. 
Methods in the first category may annotate the development 
artifacts by means of extension or combine a general, reusable 
variability meta-model with different domain metamodels. 
Methods in the second category specify the variability models 
using notations such as feature diagrams, decision models, CVL, 
and OVM.  
Haugen et al. [11] propose a reference model for comparing 
feature modeling approaches. This model makes distinction 
between the generic sphere, which includes feature models and 
product line models, and the specific sphere, which includes 
feature selection and product models. Three approaches to 
system families modeling are compared based on this reference 
model: standard languages, annotations, and domain-specific 
languages.  
Matinlassi [19] suggests an evaluation framework that is based 
on Normative Information Model-based Systems Analysis and 
Design (NIMSAD) [15]. According to this framework, there are 

four essential categories of elements for method evaluation: (1) 
context, including specific goals, product line aspects, 
application domains, and method inputs/outputs; (2) user, 
including target groups, motivation, needed skills, and guidance; 
(3) contents, including method structure, artifacts, architectural 
viewpoints, language, variability, and tool support; and (4) 
validation, including method maturity and architecture quality.  
Heidenreich et al. [12] classify variability mapping methods, 
namely, methods that explicitly specify the relations between 
feature models and the models used to describe the details of the 
product line (base models). The primary classification is to 
declarative and operational methods. Declarative methods focus 
on the needed changes and not on how to perform them, while 
operational methods concentrate on how target models must be 
modified when specific features are selected or deselected. 
Using a case study, the paper further explores two languages: 
FeatureMapper, a representative of the declarative approach, and 
VML*, a representative of the operational approach. 
Sinnema and Deelstra [32] claim that three aspects are important 
to engineers when applying variability modeling techniques: 
modeling (expressiveness), tool support, and (supporting) 
processes. Since only a few modeling approaches refer to 
recommended processes, the focus is on the first two aspects: (1) 
modeling – How are choices modeled? How are products 
modeled? Which abstractions are used to manage complexity? 
How are the constraints and quality attributes modeled? How are 
incompleteness and imprecision addressed?; and (2) tools – 
What are the supported views, their focuses and purposes? How 
is inconsistency prevented? How is configuration guided? Does 
the tool include an inference engine? How is the mapping of the 
decisions to actual product family artifacts done? Based on these 
questions, Sinnema and Deelstra compared six variability 
modeling techniques: CBFM, COVAMOF, VSL, ConIPF, 
Pure::Variants, and Koalish. 
Several attempts have been made to compare feature modeling 
languages [2; 4; 13; 29]. These studies focus on the 
expressiveness of the compared languages or methods and their 
representation and support characteristics. Czarnecki et al. [2], 
for example, compared feature modeling and decision modeling 
along ten dimensions: applications, unit of variability (features 
vs. decisions), orthogonality, data types, hierarchy, 
dependencies and constraints, mapping to artifacts, binding time 
and mode, modularity, and tool aspects. They further showed 
how the main properties of feature modeling and decision 
modeling are reflected in three specific methods including an 
initial version of CVL. 
Schobbens et al. [29] surveyed and compared seven feature 
diagram notations. These notations differ in their graph types 
(trees vs. directed acyclic graphs – DAG), the supported node 
types (e.g., cardinality support), the supported graphical 
constraint types (namely, “requires”, “excludes”, none, or both), 
and the supported textual constraint types (i.e., textual 
composition rules support). In a later work, Heymans et al. [13] 
evaluated the formal properties of feature diagram languages 
using Krogstie et al.’s semiotic quality framework [17] and 
Harel and Rumpe’s guidelines for defining formal visual 
languages [9]. The list of evaluation criteria included: (1) 
expressiveness: what can the language express? (2) 
embeddability: can the structure of a diagram be kept when 
translated to another language? and (3) succinctness: how big 
are the expressions of one and the same semantic object? 
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Djebbi and Salinesi [4] provided a comparative survey on four 
feature diagram languages for requirements variability 
modeling. The languages are compared according to a list of 
criteria that includes readability, simplicity and expressiveness, 
type distinction, documentation, dependencies, evolution, 
adaptability, scalability, support, unification, and 
standardizeability. 
The above studies neglect usage aspects, such as 
comprehensibility and ease of learning. Comprehensibility is of 
special importance in modeling, as the abstract goal of modeling 
is to formally describe some aspects of the physical and social 
world around us for the purpose of understanding and 
communication [22]. Indeed, recent research has started to 
examine comprehensibility aspects of variability modeling 
languages. The work in [13], for example, looks into 
comprehensibility appropriateness, namely whether or not 
language users understand all possible statements of the 
language. Comprehensibility appropriateness is, however, 
handled subjectively through embeddability and succinctness. 
The work in [27; 28] compared the comprehensibility of CBFM 
[3], which is a feature-oriented language, and ADOM [26], 
which is a UML-based approach, according to commonality- 
and variability-related concepts, including mandatory vs. 
optional elements, constraints (dependencies), and variation 
points and variants. 
Despite those initiatives, no studies have addressed so far 
comprehensibility of orthogonal variability modeling in general 
and CVL and OVM in particular. In addition, the research to 
date has focused on variability models alone, while no studies 
investigating the relations to development artifacts have been 
undertaken so far. Clearly, a deeper understanding of 
comprehensibility of orthogonal variability modeling including 
relations to base models is needed as a basis for designing and 
shaping modeling languages in this domain. In this paper, we 
therefore describe our research to identify difficulties in 
understanding orthogonal variability models and their relations 
to base models. Our motivation is to complement the previous 
research and examine specifically two common orthogonal 
variability modeling languages, namely CVL and OVM. 

3. EXPERIMENT DESIGN AND 
PROCEDURE  
3.1 Research Goal and Questions 
The main goal of this paper is to develop an improved 
understanding of potential comprehensibility problems in 
orthogonal variability modeling. Specifically, we focus on 
comprehensibility of the main semantic constructs of variability 
modeling languages, namely, mandatory/optional elements, 
OR/XOR relations, and constraints (“requires”/”implies” and 
“excludes’ dependencies), as well as the relations to base models. 
With ‘semantic construct’ we refer to the underlying meaning of 
modeling symbols – their content, as defined by the metamodel 
[21]. We are interested in identifying the semantic constructs that 
are difficult to understand and may lead to comprehension 
problems. Due to the lack of existing cognitive theories on 
comprehending such software variability aspects, we refrain from 
developing exact hypotheses, as it would not be helpful in such 
an exploratory setting [18]. Instead, we seek to answer the 
following research question:  
 

RQ1: Are there differences in comprehension of basic semantic 
constructs of orthogonal variability modeling 
(mandatory/optional elements, OR/XOR relations, constraints, 
and relations to base models)? 

The same semantic constructs are represented differently in 
various languages. The languages’ visual notation defines 
different graphical symbols and composition rules to visualize 
the same underlying concepts. As visual notation is a relevant 
influence factor for comprehensibility of visual models [7; 21], it 
is not possible to gain reliable insights on the comprehension of 
represented semantic constructs, when considering only one 
visual notation. To be able to make general inferences on 
comprehensibility of the relevant semantic constructs in 
orthogonal variability modeling, we, therefore, use two different 
modeling languages in our experimental design: OVM and CVL. 
This allows us to additionally examine the following research 
question:  

RQ2: Are there differences in comprehension of CVL and OVM 
models? 

Comprehension difficulties that are common in both CVL and 
OVM may be attributed to orthogonal variability modeling in 
general, while difficulties that arise only in one language hint to 
potential comprehensibility problems of the notational design of 
the respective language. Thus, we are further interested in the 
interaction effects between the semantic construct type and the 
language. 
To complement and extend our goal, we are additionally 
interested in the users’ views and their evaluation. Specifically, 
we aim to assess how users subjectively rate the difficulty of the 
different types of models involved in orthogonal variability 
modeling and how they rate their preferences concerning the 
modeling language (CVL and OVM). Accordingly, we phrased 
the following research questions: 

RQ3a: Are there differences in users’ perception of the difficulty 
of the three types of models involved in orthogonal variability 
modeling (variability models, base models, and their relations)? 
RQ3b: Are there differences in users’ perception of the 
difficulty to use, comprehend, and learn CVL and OVM? 

To answer our research questions we used a randomized 
experimental design. We used two different experimental groups, 
in which participants got two models of different application 
domains in the two modeling languages. Our design ensured that 
each participant answered comprehension questions related to the 
main semantic constructs and targeting model elements on a 
CVL model as well as on an OVM model.  The exact procedure 
is explained in Section 3.4. The main independent variables in 
our research design were the modeling language and the type of 
semantic construct. The dependent variables were 
comprehension score (measured using the percentage of correct 
solution), time spent to complete tasks, and user’s perception of 
difficulty.  

3.2 Experimental Material 
To enable each participant to experience both modeling 
languages, we constructed two models in different application 
domains. The models were similar in complexity (in terms of the 
number of elements) and in the examined model elements and 
semantic constructs. The first application domain was of mobile 
phones, including features referring to media, display, 
connectivity, and sensors. The second application domain was of 
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smart homes, including features referring to security settings, 
alarm, light management, and air-conditioners. In each 
application domain, an OVM model and a CVL model were 
built, preserving their informational equivalence. Thus, the 
objects of the experiment were four models in two application 
domains. Each model included two parts: a variability model 
and a model depicting the relations between part of the 
variability model and a base model specified in a UML class 
diagram. Due to space limitations, only the models depicting the 
relations between the variability and base models in the mobile 
phones application domain are presented in the appendix.  

3.3 Measurement of Comprehension 
The comprehension tasks were embedded within an online 
questionnaire. On each model 19 questions were asked. We 
constructed the questions so that it was necessary to understand 
a specific semantic construct for answering each question. 14 
questions examined whether specific configurations are allowed 
in the application domain according to the variability model. Of 
these questions, 6 questions were related to optional and 
mandatory elements, 6 to OR and XOR relations and 2 to 
constraints. Further 5 questions examined valid configuration 
designs based on the relations between the variability model and 
the base model.  
All the questions in the questionnaire can be described as 
surface-level tasks which measure comprehension of models 
more directly than deep-level tasks that require participants to 
work with the models in a usage context [23].  
The participants were presented with a model and one question 
at a time (the questions were presented in the same order for 
each model). The participants had to choose for each question 
between the following answers: Correct, Wrong, Cannot be 
answered from model, I don’t know. After answering a question, 
the participant proceeded to the next question, but could not 
return to previous questions. This way we could accurately 
measure the time needed to answer an individual question.  
We ensured that the wording of questions was comparable and 
therefore each question started with “can”. Examples of 
questions used in the experiment for the mobile phone domain 
and their categorization are: 

1. Can a mobile phone have no sensors? (optional element) 
2. Can a mobile phone with sensors have no accelerometer? 

(mandatory element) 
3. Can a mobile phone with mp4 have both download and 

stream capabilities? (OR relation) 
4. Can a mobile phone with non-touchscreen have neither 

front keyboard nor hidden keyboard? (XOR relation) 
5. Can a mobile phone have USB, but no camera and 

download (of mp4)? (constraint) 
6. Can a mobile phone design include the classes USB Info 

and MP4 Info with download method, but without Camera 
Info class? (relations to base model) 

3.4 Procedures 
The participants were randomly divided into two main 
experimental groups, as described in Table 1. Each participant 
got the models of the two application domains, but in different 
modeling languages. In addition, we counterbalanced the orders 
of the models to control for possible learning and fatigue effects. 
For instance, about half of the participants in the first 
experimental group got the models in the following order: a 
CVL model of mobile phones followed by an OVM model of 

smart homes, while the other half got the same models in the 
opposite order. 

Table 1. The experimental groups 

Group Mobile 
Phones  

Smart 
Homes Order No of 

participants 

1 CVL OVM 

mobile-CVL 
smart-OVM 12 

smart-OVM 
mobile-CVL 10 

2 OVM CVL 

smart-CVL 
mobile-OVM 12 

mobile-OVM 
smart-CVL 11 

The participants were requested to open the online 
questionnaire, which was divided into four parts: a pre-
questionnaire, Part A (questions on the first model and post-
evaluation), Part B (questions on the second model and post-
evaluation), and a post-experiment questionnaire.  
The pre-questionnaire obtained general information about the 
participants and their background, including age, gender, degree 
and subject of studies, and familiarity with the application 
domains (mobile phones and smart homes). As the base models 
were specified in class diagrams, we asked in the pre-
questionnaire about familiarity with class diagrams and 
knowledge of class diagrams. To measure (self-rated) familiarity 
with class diagrams, we adopted the three-item modeling 
grammar familiarity scale of Recker [25]: (1) Overall, I am very 
familiar with class diagrams; (2) I feel very confident in 
understanding class diagrams; (3) I feel very competent in 
modeling class diagrams. We further objectively examined the 
prior knowledge of the participants in modeling class diagrams 
through three comprehension questions on a simple class 
diagram. Each question presented a statement and four possible 
answers: Correct, Wrong, Cannot be answered from model, I 
don’t know.  
After filling the pre-questionnaire, the participants were 
sequentially presented with two parts. In each part slides 
explaining and exemplifying the modeling language concepts 
were presented. The number of slides, their subjects, and the 
used examples were similar for the two modeling languages. 
The participants also got hard-copies of these slides which they 
could consult while answering the questions. The participants 
had to study the modeling language on their own from the slides 
and proceed to the model and its questions. The time spent on 
each question was recorded by the online questionnaire. No rigid 
time constraints were imposed on the participants. 
After completing each part, the participants had to fill a post-
part questionnaire that collected feedback on the difficulty to 
understand the variability model (with 4 items asking about 
mandatory and optional elements, OR and XOR relations), the 
base model (with 3 items asking about the base model in 
general, classes and packages, associations), and the relations 
between these two models. The answering options ranged from 
1=very easy to 7=very difficult.  
Finally, after completing the two main parts of the questionnaire 
and experimenting with both modeling languages, the 
participants had to fill a post-experiment questionnaire with 
three single-choice items which required choosing the preferred 
modeling language (or selecting a neutral response option) in 
terms of usage, comprehension, and learning difficulties. 

45



3.5 Participants 
The participants were information systems students in their 
second year of studies. It has already been shown in [33] that 
students have a good understanding of the way industry behaves, 
and may work well as subjects in empirical studies in areas such 
as requirements engineering. Additionally, students are a 
relatively homogenous group concerning knowledge about and 
experience with conceptual modeling [31].  
The experiment took place in the last week of the winter 
semester of the academic year 2013-14 in a course entitled 
“design and development of information systems”, whose main 
focus was modeling. The students studied in that course 
modeling in ER, DFD, and UML, but were not exposed to 
software product line engineering or variability modeling. They 
had homework to practice their capabilities in the different 
modeling languages. To assure sufficient motivation, the 
participants received up to 5 points bonus to their course grades 
depending on their achievements in the experiment. A total of 
45 students participated in the study (22 and 23 per experimental 
group): 26 males (58%) and 19 females (42%) with a mean age 
of 24 years. 

4. RESULTS 
4.1 Comprehension Tasks 
To answer the two first research questions, we performed for 
each dependent variable two mixed-design analyses of 
covariance (ANCOVA) with four factors: (1) semantic construct 
type (optional and mandatory elements, OR and XOR relations, 
constraints, relations to the base model) as a within-subjects 
factor; (2) modeling language (OVM, CVL) as a between-
subjects factor; (3) application domain (mobile phone, smart 
home) as a between-subjects factor; and (4) model order (first 
model, second model) as a between-subjects factor. As 
dependent variables, we used the mean percentage of correct 
answers (for each model) in the first analysis and the mean time 
to complete the tasks in the second analysis. The ‘semantic 
construct type’ factor relates to RQ1, while the ‘modeling 
language’ factor relates to RQ2. We included the factors 
‘application domain’ and ‘model order’ in the analyses to 
control for possible domain knowledge, learning, and fatigue 
effects. Prior to our analyses, we also checked whether the 
control variables ‘familiarity with class diagrams’ and 
‘knowledge of class diagrams’, which were collected in the pre-
questionnaire as described in Section  3.4, had an influence on 
comprehension and on time to perform the tasks. Since 
‘familiarity with class diagrams’ did not have an influence, we 
decided to drop it from the final statistical tests we report. 
‘Knowledge of class diagrams’ had a significant effect on time 
to perform the tasks, but not on the comprehension score; 
therefore we included this variable as covariate in the ANCOVA 
for time.  
Where the assumption of sphericity [64] was violated for within-
subject effects, we report the Greenhouse-Geisser [65] corrected 
test value. In general, we report all significant effects below p 
≤.05. 

4.1.1 Comprehension Score  
We first turn to the results concerning semantic construct type 
(RQ1). There was a significant main effect of semantic construct 
type on comprehension (Fdf=2.57,249=70.65, p=.000; see Figure 1-
Figure 3). Questions related to optional and mandatory elements 
were the easiest to comprehend and correctly answer (93% mean 

solution rate), followed by questions related to OR/XOR 
relations (85%) and constraints (82%). Questions referring to 
relations to the base model were the most difficult ones (54% 
correctness). To find out the comprehensibility of which 
semantic construct types significantly differed from each other, 
we calculated pairwise comparisons using Fisher's Least 
Significant Difference (LSD) test. All differences between 
semantic construct types were significant (p ≤.01), with the 
exception of the difference between OR/XOR relations and 
constraints (these constructs did not significantly differ).  
Regarding the effect of the application domain, there was no 
significant effect on comprehension score. However, there was a 
significant interaction effect of application domain and semantic 
construct type (F2.57,249=6.46, p=.001). From the data in Figure 
1, we observe that comprehension difficulties concerning the 
relations to base models were pronounced more strongly in the 
smart home application domain than in the mobile phone 
application domain. This could possibly be explained by the fact 
that participants were more familiar with mobile phones 
(Mean=3.87 on a 5-point scale from 1=very low to 5=very high, 
SD=.89) than with smart homes (Mean=1.98, SD=.97; t44= 
-11.87, p=.000). In addition, the three-way interaction effect 
between semantic construct type * language * application 
domain was significant (F2.57,249=3.85, p=.01). We suppose that 
this is due to the fact that the relations to the base model were 
most difficult to interpret in the CVL model of smart homes 
(34%), while solution rates varied between 57% and 65% in the 
other combinations.  
The model order had a significant influence on the 
comprehension score (Fdf=1,83=4.73, p=.03, see Figure 2). As 
would be expected, participants performed better on the second 
model (82%) than on the first model (76%).   
Turning now to the experimental evidence on the modeling 
language (RQ2), results revealed that there were no significant 
differences between OVM (80% solution rate) and CVL (77% 
solution rate) in comprehension. Figure 3 demonstrates no 
significant differences in the semantic construct level either. 

 
Figure 1. Comprehension of semantic construct types with 
respect to application domain 

 
Figure 2. Comprehension of semantic construct types with 
respect to model order 

94%
86% 83%

45%

92%
83% 81%

64%

30%
40%
50%
60%
70%
80%
90%

100%

optional /
mandatory

or / xor constraints relations to
base model

Smart Home
Mobile Phone

92%

83%
76%

53%

95%
87%

89%

56%

30%
40%
50%
60%
70%
80%
90%

100%

optional /
mandatory

or / xor constraints relations to
base model

First Model
Second Model

46



 
Figure 3. Comprehension of semantic construct types with 
respect to modeling language 

4.1.2 Comprehension Time 
Results showed that there were three significant influence 
factors on time to complete the comprehension tasks: semantic 
construct type (Fdf=1.49,246=6.26, p=.000), model order 
(Fdf=1,82=19.23, p=.000) and familiarity with class diagrams 
(Fdf=1,82=7.49, p=.008). As we can observe from Figure 4, 
semantic construct type did affect comprehension time. 
Participants spent most time to solve questions on relations to 
base models (109 seconds per question on average), followed by 
OR/XOR relations (51 sec.), constraints (44 sec.) and 
optional/mandatory elements (39 sec.). All pairwise 
comparisons using Fisher's LSD test for semantic construct 
types were significant (p≤.03). In addition, participants spent 
significantly more time to solve tasks in the first model (69 sec.) 
than in the second (53 sec.). Participants with higher knowledge 
on class diagrams spent more time to solve tasks. 
There was no significant effect of language on comprehension 
time. On average, participants spent 62 seconds in OVM and 59 
seconds in CVL to solve a comprehension task. 

 
Figure 4. Comprehension time of semantic construct types 
with respect to model order (y-axis: seconds) 

4.2 Users’ Perception and Preference 
As noted, we complement our objective tests on comprehension 
with subjective tests of user perception on difficulty of the 
different model types and preference of the modeling languages. 
This section reports our results regarding RQ3. 

4.2.1 Perceived Comprehension Difficulties 
The questions in the post-part evaluation referred to the 
perceived difficulty of elements of the variability model, the 
base model, and the relations between the two models. Figure 5 
presents the results regarding users’ perception of difficulty 
(with 1 – very easy and 7 – very difficult) as response to RQ3a.  

 
Figure 5. Users’ perception of difficulty according to model 
type 
A repeated measures analysis of variance with the mean 
difficulties ratings of both languages as dependent variables 
showed that the type of model (variability model, base model, 
relations to base model) was significant (F1.8,135=23.63, p=.000). 
Pairwise comparisons using LSD test showed that all differences 
were significant. As can be seen from Figure 5, variability 
models were perceived to be of medium difficulty, easier than or 
almost in the same level of difficulty as base models, with which 
the participants had previous familiarity and knowledge. The 
relations between the two types of models were more difficult to 
understand. According to a t-test for paired samples with the 
perceived comprehension difficulty of the variability model 
there was no difference in the mean rating for OVM and CVL. 

4.2.2 Users’ Preferences of the Modeling Language 
Finally, we report on preferential choice of the modeling 
languages in response to RQ3b (see Figure 6). We performed 
one-sample t-test between proportions to determine whether 
there was a significant difference between the percent choosing 
CVL and OVM. Results revealed non-significant trends that 
more users prefer CVL over OVM (t44=1.78; p=.08), and rate 
the learning difficulty of OVM higher (t44=1.77; p=.08). 
Significantly more users rated the model comprehensibility 
better for CVL than for OVM (t44=2.78; p=.007). 

5. DISCUSSION AND THREATS TO 
VALIDITY 
The objective of this study was to examine comprehensibility of 
orthogonal variability modeling. We identify a number of 
interesting results. First, we found that the relations to elements 
of the base model were the most difficult semantic construct. 
The most likely explanation for the high difficulty of this 
construct is that users have to assimilate different pieces of 
information from two models (the variability model and the base 
model) simultaneously and cognitively integrate them. This may 
lead to high cognitive load for users because of a split-attention 
effect [38]. Our result is in line with prior research which has 
demonstrated users’ difficulties in navigating and relating 
information items from multiple diagrams [16; 20]. We 
therefore encourage the use of appropriate visual cues to show 
which model elements belong to each other to support users’ 
cognitive integration processes of the information from two 
different visual models [16]. 
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Figure 6. Users’ preference of the modeling languages in 
terms of (a) usage, (b) comprehension, (c) difficulty to learn 
Next, we like to discuss why questions related to 
optional/mandatory elements were the easiest to answer. This 
result could have been caused by the fact that these resemble 
binary relations, while OR/XOR relations involve at least three 
elements. Based on the cognitive load theory [34], a higher 
amount of elements that need to be paid attention leads to higher 
cognitive load resulting in higher comprehension difficulty. This 
result is also in agreement with findings in other  modeling areas 
which showed that comprehensibility is lower if attention has to 
be divided between a higher number of modeling elements for 
solving a specific task [6]. 
It is somewhat surprising that we did not find significant 
differences in comprehension between the two modeling 
languages investigated CVL and OVM. The most likely 
explanation for this finding is that the two languages use similar 
symbols (rectangles and triangles) and syntactic rules. However, 
user ratings showed a preference for CVL over OVM. Users 
also subjectively rated OVM harder to learn and CVL more 
comprehensible. This result may be explained by the differences 
in the visual model structure. CVL, which has a hierarchical, 
tree structure, was perceived as easier to use, comprehend, and 
learn. The common root node for all model elements might help 
the user to search the required information and to better 
distinguish the variability model from the base model. There are, 
however, other possible explanations. For instance, we notice 
that in OVM there are two different concepts, equipped with two 
different symbols (triangle and rectangle), for representing 
variability in the specification level: variation points and 
variants. In CVL, a single construct is used – VSpec – for 

representing abstract variability. Variation points and variants 
are used in CVL only when resolving variability. In addition, the 
names of variation points in the OVM models we used (those 
that are created with REMiDEMMI1 – the OVM supporting 
tool) are placed next to the corresponding symbol, but not inside 
of it as in CVL. According to the Gestalt law of proximity [35] 
this makes it more difficult to recognize the elements as 
belonging together. While these notational differences are minor 
and did not result in measurable comprehension differences, 
they were large enough to influence the users' impression and 
intentions to use the modeling language. These findings are 
consistent with those of other studies which found that users' 
perception of criteria, such as graphic economy or  combination 
of text and symbols, influence perceived usefulness of visual 
conceptual modeling languages [5]. 
Following the well-known classification of threats to validity 
[30; 36], the limitations of our experiment are acknowledged 
below.  
External validity. One source of weakness is the use of student 
subjects. As already mentioned, using students as participants is 
acceptable in different software engineering areas. Moreover, 
the participants in our experiment had received training in 
modeling and, therefore, we do believe that they serve as an 
adequate proxy for future users of orthogonal variability 
modeling in general and OVM and CVL in particular.  
Despite the clear support for research questions, the 
generalizability of findings reported here should be undertaken 
with caution, because we could only include two different 
application domains in the study and we selected two specific 
variability modeling languages – OVM and CVL. As the two 
application domains and their models included in the 
questionnaire were typical representatives we argue that they 
provided a reasonable test of comprehensibility despite their 
simplicity. The selection of the languages was done perceiving 
OVM and CVL as common variability modeling languages that 
are well known in the literature of software product line 
engineering and variability modeling. 
Internal validity. This type of threats reflects whether observed 
differences can be attributed to the independent variables and 
aims to rule out potential alternative explanations. We chose to 
use an experiment as it affords higher internal validity than other 
methods [1]. In our repeated measures design we 
counterbalanced the order of the conditions and randomly 
assigned participants to the different treatments. Each of the four 
different models was presented equally often as first and as 
second model to the participants. As results in fact showed a 
significant learning effect from the first to the second model, we 
included the variable model order in the analysis to control for 
practice effects. We identified and measured potentially 
confounding factors on the individual level, such as familiarity 
with class diagrams and knowledge of class diagrams, and 
included them as control variables in the analyses. We created 
standardized slides for students to self-study the languages, so 
no influence of the lecturers’ capabilities, knowledge, and 
opinions were introduced to the training. In addition, we tried to 
use the same structure and wordings in the slides for CVL and 
OVM to avoid a bias for one language. 
Construct validity. This type of threats refers to the extent of 
which the operationalizations of the constructs actually measure 

                                                                    
1 Available at http://remidemmi.cdhq.de/ 
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the constructs. We used a questionnaire to assess the 
comprehension level. In order to lower guessing probability in 
the true/false questions we used two additional answer options: 
Cannot be answered from model, I don’t know.   
In addition, the models used as experimental objects were 
checked by OVM and CVL experts, who were not involved in 
the research (as authors or researchers). Time was measured by 
the online questionnaire and required no human interventions.  
Conclusion validity. We assured that random influences to the 
experimental setting were low. We used a homogenous group of 
participants who were committed to the experiment by giving 
course credit of up to 5 points (bonus) according to 
performance. This way we reduced variance in motivation and 
competence to answer the tasks correctly.  

6. CONCLUSIONS AND FUTURE WORK 
This study set out to identify comprehension difficulties in 
orthogonal variability modeling in general and to determine 
specific difficulties in CVL and OVM in particular. One of the 
more important findings to emerge from this study is that 
relations to base models are difficult to understand for users, 
while optional and mandatory elements are easy to understand. 
The difficulty to comprehend OR/XOR relations and constraints 
lay in the middle. This paper therefore encourages the 
exploration of alternative modeling strategies for visualizing 
relations to base models in orthogonal variability models.  
The second major finding was that CVL and OVM did not differ 
concerning their comprehensibility. Both languages can be 
recommended to a similar extend. However, users subjectively 
rated CVL as more comprehensible than OVM, which might be 
due to some minor shortcomings of the visual notation of OVM. 
The findings from our study might inform ongoing revisions of 
CVL and OVM. 
Several possible directions for future research emerge from our 
study. This experiment needs to be replicated in various forms 
with a larger variety of models and application domains to 
understand difficulties in comprehending semantic variability 
constructs in more detail. Opportunities exist for fellow scholars 
to examine comprehension difficulties in additional orthogonal 
variability modeling languages and compare them with 
difficulties in annotation-based approaches that support single 
models to capture both commonality and variability. Future 
studies could also extend this work and examine difficulties in 
modeling (and not just understanding) orthogonal variability 
models. Finally, we will strive for experiments in industrial 
settings. Looking ahead, further research in this field has the 
potential to guide developers in their ongoing design efforts and 
to significantly improve variability modeling in practice. 
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Appendix: Mobile Phones Models  

 
Figure 7. Part of the CVL model of mobile phones: relations to the base model 

  
Figure 8. Part of the OVM model of mobile phones: relations to the base model 
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