
Comprehensibility of Orthogonal Variability Modeling
Languages: The Cases of CVL and OVM

Iris Reinhartz-Berger
Department of Information Systems

University of Haifa, Israel
iris@is.haifa.ac.il

Kathrin Figl
Institute for Information Systems &

New Media, Vienna, Austria
kathrin.figl@wu.ac.at

ABSTRACT
As the complexity and variety of systems and software products
have increased, the ability to manage their variability effectively
and efficiently became crucial. To this end, variability can be
specified either as an integral part of the development artifacts
or in a separate orthogonal variability model. Lately, orthogonal
variability models attract a lot of attention due to the fact that
they do not require changing the complexity of the development
artifacts and can be used in conjunction with different
development artifacts. Despite this attention and to the best of
our knowledge, no empirical study examined the
comprehensibility of orthogonal variability models.
In this work, we conducted an exploratory experiment to
examine potential comprehension problems in two common
orthogonal variability modeling languages, namely, Common
Variability Language (CVL) and Orthogonal Variability Model
(OVM). We examined the comprehensibility of the variability
models and their relations to the development artifacts for
novice users. To measure comprehensibility we used
comprehension score (i.e., percentage of correct solution), time
spent to complete tasks, and participants’ perception of
difficulty of different model constructs. The results showed high
comprehensibility of the variability models, but low
comprehensibility of the relations between the variability
models and the development artifacts. Although the
comprehensibility of CVL and OVM was similar in terms of
comprehension score and time spent to complete tasks, novice
users perceived OVM as more difficult to comprehend.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
languages; D.2.13 [Software Engineering]: Reusable Software
– domain engineering

General Terms
Experimentation, Languages, Human Factors

Keywords
Variability analysis, Model Comprehension, Empirical Study,
CVL, OVM

1. INTRODUCTION
Software systems are an essential part of almost any business.
Independently, their requirements increased and became more
complex, raising variability management challenges. Variability
can be specified either as an integral part of the development
artifacts or in a separate orthogonal variability model [24]. The
former way commonly yield annotation-based approaches, in
which the development artifacts are marked (annotated)
introducing variability-related aspects. Examples of such
methods are presented in [8; 26; 37]. Among the shortcomings
of this kind of modeling approaches, Pohl et al. [24] mention:
(1) consistency problems arising from the fact that variability
may be spread across different models; (2) difficulties to trace
variability across different development stages; (3) increasing
complexity of the development artifacts, which are commonly
complex without introducing variability; (4) differences in the
concepts used to define variability between different
development artifacts; and (5) ambiguity in variability
information.
To overcome the aforementioned shortcomings, orthogonal
variability modeling promotes specifying variability in separate
models which are linked to the development artifacts, termed
base models. Two such languages are Orthogonal Variability
Model (OVM) and Common Variability Language (CVL).
OVM [24] aims at representing variability as first class models,
through the concepts of variation point and variant. A variation
point represents a variable item or a property of an item, while a
variant defines different instances of the variable item or
property. Trace links relate variability information to elements
in the base models that are affected by the variability. OVM
supports specifying the base models in a variety of languages,
including natural languages and UML. CVL [10], a proposal for
a standard submitted to Object Management Group (OMG), is a
domain-independent language for specifying and resolving
variability. It facilitates the specification and resolution of
variability over base models specified in any Meta-Object
Facility (MOF)-based language (such as UML and SysML). One
of the main concepts in CVL is VSpec, which stands for
variability specification. VSpecs are specifications of abstract
variability and are similar to features in feature modeling. They
are organized in trees representing logical constraints on their
resolutions. The relationships between elements of the
variability model and elements of the base model are specified
via different types of variation points, e.g., object existence,
which indicates that the existence of a particular object, link, or
value in the base model is in question.
In both OVM and CVL, one can specify in variability models
mandatory and optional elements, OR and XOR relations
between elements, and constraints (e.g., “requires”/”implies”
and “excludes” dependencies). In both languages, the variability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SPLC '14, September 15 - 19 2014, Florence, Italy
Copyright 2014 ACM 978-1-4503-2740-4/14/09…$15.00.
http://dx.doi.org/10.1145/2648511.2648516

42

models are linked to base models. However, these languages
differ in several aspects: (1) variability models in CVL are
structured as trees, while variability models in OVM have no
hierarchical tree structure; (2) CVL enables specifying common
and variable aspects of software products, while OVM
concentrates on variability modeling; (3) OVM diffrentiates
between variation points and variants in the specification level,
while CVL does it only when resolving variability; (4) the
relationships between variability models and base models are
specified as links in OVM and as objects in CVL; and (5) small
differences in the concrete syntaxes of the languages exist.
Despite the attention that orthogonal variability modeling
receives, there may be difficulties in understanding the different
involved models, namely, variability models and base models,
as well as the relations between the two types. To the best of our
knowledge, no empirical studies analyze such difficulties,
raising points for improving those languages. To fill this gap, the
main aim of this study was to examine the cognitive difficulty of
understanding orthogonal variability models. In particular, we
conducted an exploratory experiment using OVM and CVL as
examples of orthogonal variability modeling languages and
examined the comprehensibility of the variability models and
their relations to the base models in both languages. In both
cases the base models were specified in standard UML class
diagrams and, hence, the comprehensibility of the base models
was left out of the experiment scope.
The paper proceeds as follows. Section 2 reviews related work.
Section 3 elaborates on the experiment design and procedure,
while Section 4 presents the analysis procedure and the results.
Section 5 discusses the results and the threats to validity.
Finally, Section 6 summarizes and points on future research
directions.

2. RELATED WORK
Since orthogonal variability modeling is quite new, the literature
about evaluating orthogonal variability models is reduced. Thus,
we review in this section studies that compare to some extent
variability modeling languages in general, including feature
diagrams.
Several frameworks for evaluating, comparing, or classifying
feature or variability modeling methods have been suggested.
Istoan et al. [14], for example, primarily distinguish between
methods that use a single (unique) model to represent both
commonality and variability and methods that distinguish and
keep the variability model separate from the base model.
Methods in the first category may annotate the development
artifacts by means of extension or combine a general, reusable
variability meta-model with different domain metamodels.
Methods in the second category specify the variability models
using notations such as feature diagrams, decision models, CVL,
and OVM.
Haugen et al. [11] propose a reference model for comparing
feature modeling approaches. This model makes distinction
between the generic sphere, which includes feature models and
product line models, and the specific sphere, which includes
feature selection and product models. Three approaches to
system families modeling are compared based on this reference
model: standard languages, annotations, and domain-specific
languages.
Matinlassi [19] suggests an evaluation framework that is based
on Normative Information Model-based Systems Analysis and
Design (NIMSAD) [15]. According to this framework, there are

four essential categories of elements for method evaluation: (1)
context, including specific goals, product line aspects,
application domains, and method inputs/outputs; (2) user,
including target groups, motivation, needed skills, and guidance;
(3) contents, including method structure, artifacts, architectural
viewpoints, language, variability, and tool support; and (4)
validation, including method maturity and architecture quality.
Heidenreich et al. [12] classify variability mapping methods,
namely, methods that explicitly specify the relations between
feature models and the models used to describe the details of the
product line (base models). The primary classification is to
declarative and operational methods. Declarative methods focus
on the needed changes and not on how to perform them, while
operational methods concentrate on how target models must be
modified when specific features are selected or deselected.
Using a case study, the paper further explores two languages:
FeatureMapper, a representative of the declarative approach, and
VML*, a representative of the operational approach.
Sinnema and Deelstra [32] claim that three aspects are important
to engineers when applying variability modeling techniques:
modeling (expressiveness), tool support, and (supporting)
processes. Since only a few modeling approaches refer to
recommended processes, the focus is on the first two aspects: (1)
modeling – How are choices modeled? How are products
modeled? Which abstractions are used to manage complexity?
How are the constraints and quality attributes modeled? How are
incompleteness and imprecision addressed?; and (2) tools –
What are the supported views, their focuses and purposes? How
is inconsistency prevented? How is configuration guided? Does
the tool include an inference engine? How is the mapping of the
decisions to actual product family artifacts done? Based on these
questions, Sinnema and Deelstra compared six variability
modeling techniques: CBFM, COVAMOF, VSL, ConIPF,
Pure::Variants, and Koalish.
Several attempts have been made to compare feature modeling
languages [2; 4; 13; 29]. These studies focus on the
expressiveness of the compared languages or methods and their
representation and support characteristics. Czarnecki et al. [2],
for example, compared feature modeling and decision modeling
along ten dimensions: applications, unit of variability (features
vs. decisions), orthogonality, data types, hierarchy,
dependencies and constraints, mapping to artifacts, binding time
and mode, modularity, and tool aspects. They further showed
how the main properties of feature modeling and decision
modeling are reflected in three specific methods including an
initial version of CVL.
Schobbens et al. [29] surveyed and compared seven feature
diagram notations. These notations differ in their graph types
(trees vs. directed acyclic graphs – DAG), the supported node
types (e.g., cardinality support), the supported graphical
constraint types (namely, “requires”, “excludes”, none, or both),
and the supported textual constraint types (i.e., textual
composition rules support). In a later work, Heymans et al. [13]
evaluated the formal properties of feature diagram languages
using Krogstie et al.’s semiotic quality framework [17] and
Harel and Rumpe’s guidelines for defining formal visual
languages [9]. The list of evaluation criteria included: (1)
expressiveness: what can the language express? (2)
embeddability: can the structure of a diagram be kept when
translated to another language? and (3) succinctness: how big
are the expressions of one and the same semantic object?

43

Djebbi and Salinesi [4] provided a comparative survey on four
feature diagram languages for requirements variability
modeling. The languages are compared according to a list of
criteria that includes readability, simplicity and expressiveness,
type distinction, documentation, dependencies, evolution,
adaptability, scalability, support, unification, and
standardizeability.
The above studies neglect usage aspects, such as
comprehensibility and ease of learning. Comprehensibility is of
special importance in modeling, as the abstract goal of modeling
is to formally describe some aspects of the physical and social
world around us for the purpose of understanding and
communication [22]. Indeed, recent research has started to
examine comprehensibility aspects of variability modeling
languages. The work in [13], for example, looks into
comprehensibility appropriateness, namely whether or not
language users understand all possible statements of the
language. Comprehensibility appropriateness is, however,
handled subjectively through embeddability and succinctness.
The work in [27; 28] compared the comprehensibility of CBFM
[3], which is a feature-oriented language, and ADOM [26],
which is a UML-based approach, according to commonality-
and variability-related concepts, including mandatory vs.
optional elements, constraints (dependencies), and variation
points and variants.
Despite those initiatives, no studies have addressed so far
comprehensibility of orthogonal variability modeling in general
and CVL and OVM in particular. In addition, the research to
date has focused on variability models alone, while no studies
investigating the relations to development artifacts have been
undertaken so far. Clearly, a deeper understanding of
comprehensibility of orthogonal variability modeling including
relations to base models is needed as a basis for designing and
shaping modeling languages in this domain. In this paper, we
therefore describe our research to identify difficulties in
understanding orthogonal variability models and their relations
to base models. Our motivation is to complement the previous
research and examine specifically two common orthogonal
variability modeling languages, namely CVL and OVM.

3. EXPERIMENT DESIGN AND
PROCEDURE
3.1 Research Goal and Questions
The main goal of this paper is to develop an improved
understanding of potential comprehensibility problems in
orthogonal variability modeling. Specifically, we focus on
comprehensibility of the main semantic constructs of variability
modeling languages, namely, mandatory/optional elements,
OR/XOR relations, and constraints (“requires”/”implies” and
“excludes’ dependencies), as well as the relations to base models.
With ‘semantic construct’ we refer to the underlying meaning of
modeling symbols – their content, as defined by the metamodel
[21]. We are interested in identifying the semantic constructs that
are difficult to understand and may lead to comprehension
problems. Due to the lack of existing cognitive theories on
comprehending such software variability aspects, we refrain from
developing exact hypotheses, as it would not be helpful in such
an exploratory setting [18]. Instead, we seek to answer the
following research question:

RQ1: Are there differences in comprehension of basic semantic
constructs of orthogonal variability modeling
(mandatory/optional elements, OR/XOR relations, constraints,
and relations to base models)?

The same semantic constructs are represented differently in
various languages. The languages’ visual notation defines
different graphical symbols and composition rules to visualize
the same underlying concepts. As visual notation is a relevant
influence factor for comprehensibility of visual models [7; 21], it
is not possible to gain reliable insights on the comprehension of
represented semantic constructs, when considering only one
visual notation. To be able to make general inferences on
comprehensibility of the relevant semantic constructs in
orthogonal variability modeling, we, therefore, use two different
modeling languages in our experimental design: OVM and CVL.
This allows us to additionally examine the following research
question:

RQ2: Are there differences in comprehension of CVL and OVM
models?

Comprehension difficulties that are common in both CVL and
OVM may be attributed to orthogonal variability modeling in
general, while difficulties that arise only in one language hint to
potential comprehensibility problems of the notational design of
the respective language. Thus, we are further interested in the
interaction effects between the semantic construct type and the
language.
To complement and extend our goal, we are additionally
interested in the users’ views and their evaluation. Specifically,
we aim to assess how users subjectively rate the difficulty of the
different types of models involved in orthogonal variability
modeling and how they rate their preferences concerning the
modeling language (CVL and OVM). Accordingly, we phrased
the following research questions:

RQ3a: Are there differences in users’ perception of the difficulty
of the three types of models involved in orthogonal variability
modeling (variability models, base models, and their relations)?
RQ3b: Are there differences in users’ perception of the
difficulty to use, comprehend, and learn CVL and OVM?

To answer our research questions we used a randomized
experimental design. We used two different experimental groups,
in which participants got two models of different application
domains in the two modeling languages. Our design ensured that
each participant answered comprehension questions related to the
main semantic constructs and targeting model elements on a
CVL model as well as on an OVM model. The exact procedure
is explained in Section 3.4. The main independent variables in
our research design were the modeling language and the type of
semantic construct. The dependent variables were
comprehension score (measured using the percentage of correct
solution), time spent to complete tasks, and user’s perception of
difficulty.

3.2 Experimental Material
To enable each participant to experience both modeling
languages, we constructed two models in different application
domains. The models were similar in complexity (in terms of the
number of elements) and in the examined model elements and
semantic constructs. The first application domain was of mobile
phones, including features referring to media, display,
connectivity, and sensors. The second application domain was of

44

smart homes, including features referring to security settings,
alarm, light management, and air-conditioners. In each
application domain, an OVM model and a CVL model were
built, preserving their informational equivalence. Thus, the
objects of the experiment were four models in two application
domains. Each model included two parts: a variability model
and a model depicting the relations between part of the
variability model and a base model specified in a UML class
diagram. Due to space limitations, only the models depicting the
relations between the variability and base models in the mobile
phones application domain are presented in the appendix.

3.3 Measurement of Comprehension
The comprehension tasks were embedded within an online
questionnaire. On each model 19 questions were asked. We
constructed the questions so that it was necessary to understand
a specific semantic construct for answering each question. 14
questions examined whether specific configurations are allowed
in the application domain according to the variability model. Of
these questions, 6 questions were related to optional and
mandatory elements, 6 to OR and XOR relations and 2 to
constraints. Further 5 questions examined valid configuration
designs based on the relations between the variability model and
the base model.
All the questions in the questionnaire can be described as
surface-level tasks which measure comprehension of models
more directly than deep-level tasks that require participants to
work with the models in a usage context [23].
The participants were presented with a model and one question
at a time (the questions were presented in the same order for
each model). The participants had to choose for each question
between the following answers: Correct, Wrong, Cannot be
answered from model, I don’t know. After answering a question,
the participant proceeded to the next question, but could not
return to previous questions. This way we could accurately
measure the time needed to answer an individual question.
We ensured that the wording of questions was comparable and
therefore each question started with “can”. Examples of
questions used in the experiment for the mobile phone domain
and their categorization are:

1. Can a mobile phone have no sensors? (optional element)
2. Can a mobile phone with sensors have no accelerometer?

(mandatory element)
3. Can a mobile phone with mp4 have both download and

stream capabilities? (OR relation)
4. Can a mobile phone with non-touchscreen have neither

front keyboard nor hidden keyboard? (XOR relation)
5. Can a mobile phone have USB, but no camera and

download (of mp4)? (constraint)
6. Can a mobile phone design include the classes USB Info

and MP4 Info with download method, but without Camera
Info class? (relations to base model)

3.4 Procedures
The participants were randomly divided into two main
experimental groups, as described in Table 1. Each participant
got the models of the two application domains, but in different
modeling languages. In addition, we counterbalanced the orders
of the models to control for possible learning and fatigue effects.
For instance, about half of the participants in the first
experimental group got the models in the following order: a
CVL model of mobile phones followed by an OVM model of

smart homes, while the other half got the same models in the
opposite order.

Table 1. The experimental groups

Group Mobile
Phones

Smart
Homes Order No of

participants

1 CVL OVM

mobile-CVL
smart-OVM 12

smart-OVM
mobile-CVL 10

2 OVM CVL

smart-CVL
mobile-OVM 12

mobile-OVM
smart-CVL 11

The participants were requested to open the online
questionnaire, which was divided into four parts: a pre-
questionnaire, Part A (questions on the first model and post-
evaluation), Part B (questions on the second model and post-
evaluation), and a post-experiment questionnaire.
The pre-questionnaire obtained general information about the
participants and their background, including age, gender, degree
and subject of studies, and familiarity with the application
domains (mobile phones and smart homes). As the base models
were specified in class diagrams, we asked in the pre-
questionnaire about familiarity with class diagrams and
knowledge of class diagrams. To measure (self-rated) familiarity
with class diagrams, we adopted the three-item modeling
grammar familiarity scale of Recker [25]: (1) Overall, I am very
familiar with class diagrams; (2) I feel very confident in
understanding class diagrams; (3) I feel very competent in
modeling class diagrams. We further objectively examined the
prior knowledge of the participants in modeling class diagrams
through three comprehension questions on a simple class
diagram. Each question presented a statement and four possible
answers: Correct, Wrong, Cannot be answered from model, I
don’t know.
After filling the pre-questionnaire, the participants were
sequentially presented with two parts. In each part slides
explaining and exemplifying the modeling language concepts
were presented. The number of slides, their subjects, and the
used examples were similar for the two modeling languages.
The participants also got hard-copies of these slides which they
could consult while answering the questions. The participants
had to study the modeling language on their own from the slides
and proceed to the model and its questions. The time spent on
each question was recorded by the online questionnaire. No rigid
time constraints were imposed on the participants.
After completing each part, the participants had to fill a post-
part questionnaire that collected feedback on the difficulty to
understand the variability model (with 4 items asking about
mandatory and optional elements, OR and XOR relations), the
base model (with 3 items asking about the base model in
general, classes and packages, associations), and the relations
between these two models. The answering options ranged from
1=very easy to 7=very difficult.
Finally, after completing the two main parts of the questionnaire
and experimenting with both modeling languages, the
participants had to fill a post-experiment questionnaire with
three single-choice items which required choosing the preferred
modeling language (or selecting a neutral response option) in
terms of usage, comprehension, and learning difficulties.

45

3.5 Participants
The participants were information systems students in their
second year of studies. It has already been shown in [33] that
students have a good understanding of the way industry behaves,
and may work well as subjects in empirical studies in areas such
as requirements engineering. Additionally, students are a
relatively homogenous group concerning knowledge about and
experience with conceptual modeling [31].
The experiment took place in the last week of the winter
semester of the academic year 2013-14 in a course entitled
“design and development of information systems”, whose main
focus was modeling. The students studied in that course
modeling in ER, DFD, and UML, but were not exposed to
software product line engineering or variability modeling. They
had homework to practice their capabilities in the different
modeling languages. To assure sufficient motivation, the
participants received up to 5 points bonus to their course grades
depending on their achievements in the experiment. A total of
45 students participated in the study (22 and 23 per experimental
group): 26 males (58%) and 19 females (42%) with a mean age
of 24 years.

4. RESULTS
4.1 Comprehension Tasks
To answer the two first research questions, we performed for
each dependent variable two mixed-design analyses of
covariance (ANCOVA) with four factors: (1) semantic construct
type (optional and mandatory elements, OR and XOR relations,
constraints, relations to the base model) as a within-subjects
factor; (2) modeling language (OVM, CVL) as a between-
subjects factor; (3) application domain (mobile phone, smart
home) as a between-subjects factor; and (4) model order (first
model, second model) as a between-subjects factor. As
dependent variables, we used the mean percentage of correct
answers (for each model) in the first analysis and the mean time
to complete the tasks in the second analysis. The ‘semantic
construct type’ factor relates to RQ1, while the ‘modeling
language’ factor relates to RQ2. We included the factors
‘application domain’ and ‘model order’ in the analyses to
control for possible domain knowledge, learning, and fatigue
effects. Prior to our analyses, we also checked whether the
control variables ‘familiarity with class diagrams’ and
‘knowledge of class diagrams’, which were collected in the pre-
questionnaire as described in Section 3.4, had an influence on
comprehension and on time to perform the tasks. Since
‘familiarity with class diagrams’ did not have an influence, we
decided to drop it from the final statistical tests we report.
‘Knowledge of class diagrams’ had a significant effect on time
to perform the tasks, but not on the comprehension score;
therefore we included this variable as covariate in the ANCOVA
for time.
Where the assumption of sphericity [64] was violated for within-
subject effects, we report the Greenhouse-Geisser [65] corrected
test value. In general, we report all significant effects below p
≤.05.

4.1.1 Comprehension Score
We first turn to the results concerning semantic construct type
(RQ1). There was a significant main effect of semantic construct
type on comprehension (Fdf=2.57,249=70.65, p=.000; see Figure 1-
Figure 3). Questions related to optional and mandatory elements
were the easiest to comprehend and correctly answer (93% mean

solution rate), followed by questions related to OR/XOR
relations (85%) and constraints (82%). Questions referring to
relations to the base model were the most difficult ones (54%
correctness). To find out the comprehensibility of which
semantic construct types significantly differed from each other,
we calculated pairwise comparisons using Fisher's Least
Significant Difference (LSD) test. All differences between
semantic construct types were significant (p ≤.01), with the
exception of the difference between OR/XOR relations and
constraints (these constructs did not significantly differ).
Regarding the effect of the application domain, there was no
significant effect on comprehension score. However, there was a
significant interaction effect of application domain and semantic
construct type (F2.57,249=6.46, p=.001). From the data in Figure
1, we observe that comprehension difficulties concerning the
relations to base models were pronounced more strongly in the
smart home application domain than in the mobile phone
application domain. This could possibly be explained by the fact
that participants were more familiar with mobile phones
(Mean=3.87 on a 5-point scale from 1=very low to 5=very high,
SD=.89) than with smart homes (Mean=1.98, SD=.97; t44=
-11.87, p=.000). In addition, the three-way interaction effect
between semantic construct type * language * application
domain was significant (F2.57,249=3.85, p=.01). We suppose that
this is due to the fact that the relations to the base model were
most difficult to interpret in the CVL model of smart homes
(34%), while solution rates varied between 57% and 65% in the
other combinations.
The model order had a significant influence on the
comprehension score (Fdf=1,83=4.73, p=.03, see Figure 2). As
would be expected, participants performed better on the second
model (82%) than on the first model (76%).
Turning now to the experimental evidence on the modeling
language (RQ2), results revealed that there were no significant
differences between OVM (80% solution rate) and CVL (77%
solution rate) in comprehension. Figure 3 demonstrates no
significant differences in the semantic construct level either.

Figure 1. Comprehension of semantic construct types with
respect to application domain

Figure 2. Comprehension of semantic construct types with
respect to model order

94%
86% 83%

45%

92%
83% 81%

64%

30%
40%
50%
60%
70%
80%
90%

100%

optional /
mandatory

or / xor constraints relations to
base model

Smart Home
Mobile Phone

92%

83%
76%

53%

95%
87%

89%

56%

30%
40%
50%
60%
70%
80%
90%

100%

optional /
mandatory

or / xor constraints relations to
base model

First Model
Second Model

46

Figure 3. Comprehension of semantic construct types with
respect to modeling language

4.1.2 Comprehension Time
Results showed that there were three significant influence
factors on time to complete the comprehension tasks: semantic
construct type (Fdf=1.49,246=6.26, p=.000), model order
(Fdf=1,82=19.23, p=.000) and familiarity with class diagrams
(Fdf=1,82=7.49, p=.008). As we can observe from Figure 4,
semantic construct type did affect comprehension time.
Participants spent most time to solve questions on relations to
base models (109 seconds per question on average), followed by
OR/XOR relations (51 sec.), constraints (44 sec.) and
optional/mandatory elements (39 sec.). All pairwise
comparisons using Fisher's LSD test for semantic construct
types were significant (p≤.03). In addition, participants spent
significantly more time to solve tasks in the first model (69 sec.)
than in the second (53 sec.). Participants with higher knowledge
on class diagrams spent more time to solve tasks.
There was no significant effect of language on comprehension
time. On average, participants spent 62 seconds in OVM and 59
seconds in CVL to solve a comprehension task.

Figure 4. Comprehension time of semantic construct types
with respect to model order (y-axis: seconds)

4.2 Users’ Perception and Preference
As noted, we complement our objective tests on comprehension
with subjective tests of user perception on difficulty of the
different model types and preference of the modeling languages.
This section reports our results regarding RQ3.

4.2.1 Perceived Comprehension Difficulties
The questions in the post-part evaluation referred to the
perceived difficulty of elements of the variability model, the
base model, and the relations between the two models. Figure 5
presents the results regarding users’ perception of difficulty
(with 1 – very easy and 7 – very difficult) as response to RQ3a.

Figure 5. Users’ perception of difficulty according to model
type
A repeated measures analysis of variance with the mean
difficulties ratings of both languages as dependent variables
showed that the type of model (variability model, base model,
relations to base model) was significant (F1.8,135=23.63, p=.000).
Pairwise comparisons using LSD test showed that all differences
were significant. As can be seen from Figure 5, variability
models were perceived to be of medium difficulty, easier than or
almost in the same level of difficulty as base models, with which
the participants had previous familiarity and knowledge. The
relations between the two types of models were more difficult to
understand. According to a t-test for paired samples with the
perceived comprehension difficulty of the variability model
there was no difference in the mean rating for OVM and CVL.

4.2.2 Users’ Preferences of the Modeling Language
Finally, we report on preferential choice of the modeling
languages in response to RQ3b (see Figure 6). We performed
one-sample t-test between proportions to determine whether
there was a significant difference between the percent choosing
CVL and OVM. Results revealed non-significant trends that
more users prefer CVL over OVM (t44=1.78; p=.08), and rate
the learning difficulty of OVM higher (t44=1.77; p=.08).
Significantly more users rated the model comprehensibility
better for CVL than for OVM (t44=2.78; p=.007).

5. DISCUSSION AND THREATS TO
VALIDITY
The objective of this study was to examine comprehensibility of
orthogonal variability modeling. We identify a number of
interesting results. First, we found that the relations to elements
of the base model were the most difficult semantic construct.
The most likely explanation for the high difficulty of this
construct is that users have to assimilate different pieces of
information from two models (the variability model and the base
model) simultaneously and cognitively integrate them. This may
lead to high cognitive load for users because of a split-attention
effect [38]. Our result is in line with prior research which has
demonstrated users’ difficulties in navigating and relating
information items from multiple diagrams [16; 20]. We
therefore encourage the use of appropriate visual cues to show
which model elements belong to each other to support users’
cognitive integration processes of the information from two
different visual models [16].

93%

83% 84%

60%

94%
86%

80%

49%

30%

40%

50%

60%

70%

80%

90%

100%

optional /
mandatory

or / xor constraints relations to
base model

OVM
CVL

46
56 50

121

31
45

38

98

0
20
40
60
80

100
120

optional /
mandatory

or / xor constraints relations to
base model

First Model
Second Model

3.38
3.87

4.42

3.44 3.62
4.44

1

2

3

4

5

6

7

variability
model

base model relations to
base model

CVL

OVM

47

(a)

(b)

(c)
Figure 6. Users’ preference of the modeling languages in
terms of (a) usage, (b) comprehension, (c) difficulty to learn
Next, we like to discuss why questions related to
optional/mandatory elements were the easiest to answer. This
result could have been caused by the fact that these resemble
binary relations, while OR/XOR relations involve at least three
elements. Based on the cognitive load theory [34], a higher
amount of elements that need to be paid attention leads to higher
cognitive load resulting in higher comprehension difficulty. This
result is also in agreement with findings in other modeling areas
which showed that comprehensibility is lower if attention has to
be divided between a higher number of modeling elements for
solving a specific task [6].
It is somewhat surprising that we did not find significant
differences in comprehension between the two modeling
languages investigated CVL and OVM. The most likely
explanation for this finding is that the two languages use similar
symbols (rectangles and triangles) and syntactic rules. However,
user ratings showed a preference for CVL over OVM. Users
also subjectively rated OVM harder to learn and CVL more
comprehensible. This result may be explained by the differences
in the visual model structure. CVL, which has a hierarchical,
tree structure, was perceived as easier to use, comprehend, and
learn. The common root node for all model elements might help
the user to search the required information and to better
distinguish the variability model from the base model. There are,
however, other possible explanations. For instance, we notice
that in OVM there are two different concepts, equipped with two
different symbols (triangle and rectangle), for representing
variability in the specification level: variation points and
variants. In CVL, a single construct is used – VSpec – for

representing abstract variability. Variation points and variants
are used in CVL only when resolving variability. In addition, the
names of variation points in the OVM models we used (those
that are created with REMiDEMMI1 – the OVM supporting
tool) are placed next to the corresponding symbol, but not inside
of it as in CVL. According to the Gestalt law of proximity [35]
this makes it more difficult to recognize the elements as
belonging together. While these notational differences are minor
and did not result in measurable comprehension differences,
they were large enough to influence the users' impression and
intentions to use the modeling language. These findings are
consistent with those of other studies which found that users'
perception of criteria, such as graphic economy or combination
of text and symbols, influence perceived usefulness of visual
conceptual modeling languages [5].
Following the well-known classification of threats to validity
[30; 36], the limitations of our experiment are acknowledged
below.
External validity. One source of weakness is the use of student
subjects. As already mentioned, using students as participants is
acceptable in different software engineering areas. Moreover,
the participants in our experiment had received training in
modeling and, therefore, we do believe that they serve as an
adequate proxy for future users of orthogonal variability
modeling in general and OVM and CVL in particular.
Despite the clear support for research questions, the
generalizability of findings reported here should be undertaken
with caution, because we could only include two different
application domains in the study and we selected two specific
variability modeling languages – OVM and CVL. As the two
application domains and their models included in the
questionnaire were typical representatives we argue that they
provided a reasonable test of comprehensibility despite their
simplicity. The selection of the languages was done perceiving
OVM and CVL as common variability modeling languages that
are well known in the literature of software product line
engineering and variability modeling.
Internal validity. This type of threats reflects whether observed
differences can be attributed to the independent variables and
aims to rule out potential alternative explanations. We chose to
use an experiment as it affords higher internal validity than other
methods [1]. In our repeated measures design we
counterbalanced the order of the conditions and randomly
assigned participants to the different treatments. Each of the four
different models was presented equally often as first and as
second model to the participants. As results in fact showed a
significant learning effect from the first to the second model, we
included the variable model order in the analysis to control for
practice effects. We identified and measured potentially
confounding factors on the individual level, such as familiarity
with class diagrams and knowledge of class diagrams, and
included them as control variables in the analyses. We created
standardized slides for students to self-study the languages, so
no influence of the lecturers’ capabilities, knowledge, and
opinions were introduced to the training. In addition, we tried to
use the same structure and wordings in the slides for CVL and
OVM to avoid a bias for one language.
Construct validity. This type of threats refers to the extent of
which the operationalizations of the constructs actually measure

1 Available at http://remidemmi.cdhq.de/

56%

11%

33%

0%

10%

20%

30%

40%

50%

60%

I prefer CVL over
OVM

no preference I prefer OVM
over CVL

59%

17%
24%

0%

10%

20%

30%

40%

50%

60%

70%

CVL models were
more

comprehensible

the same
comprehensibility

OVM models were
more

comprehensible

26% 26%

48%

0%

10%

20%

30%

40%

50%

60%

CVL was more
difficult to learn

the same difficulty OVM was more
difficult to learn

48

the constructs. We used a questionnaire to assess the
comprehension level. In order to lower guessing probability in
the true/false questions we used two additional answer options:
Cannot be answered from model, I don’t know.
In addition, the models used as experimental objects were
checked by OVM and CVL experts, who were not involved in
the research (as authors or researchers). Time was measured by
the online questionnaire and required no human interventions.
Conclusion validity. We assured that random influences to the
experimental setting were low. We used a homogenous group of
participants who were committed to the experiment by giving
course credit of up to 5 points (bonus) according to
performance. This way we reduced variance in motivation and
competence to answer the tasks correctly.

6. CONCLUSIONS AND FUTURE WORK
This study set out to identify comprehension difficulties in
orthogonal variability modeling in general and to determine
specific difficulties in CVL and OVM in particular. One of the
more important findings to emerge from this study is that
relations to base models are difficult to understand for users,
while optional and mandatory elements are easy to understand.
The difficulty to comprehend OR/XOR relations and constraints
lay in the middle. This paper therefore encourages the
exploration of alternative modeling strategies for visualizing
relations to base models in orthogonal variability models.
The second major finding was that CVL and OVM did not differ
concerning their comprehensibility. Both languages can be
recommended to a similar extend. However, users subjectively
rated CVL as more comprehensible than OVM, which might be
due to some minor shortcomings of the visual notation of OVM.
The findings from our study might inform ongoing revisions of
CVL and OVM.
Several possible directions for future research emerge from our
study. This experiment needs to be replicated in various forms
with a larger variety of models and application domains to
understand difficulties in comprehending semantic variability
constructs in more detail. Opportunities exist for fellow scholars
to examine comprehension difficulties in additional orthogonal
variability modeling languages and compare them with
difficulties in annotation-based approaches that support single
models to capture both commonality and variability. Future
studies could also extend this work and examine difficulties in
modeling (and not just understanding) orthogonal variability
models. Finally, we will strive for experiments in industrial
settings. Looking ahead, further research in this field has the
potential to guide developers in their ongoing design efforts and
to significantly improve variability modeling in practice.

7. ACKNOWLEDGMENTS
The authors would like to thank Prof. Øystein Haugen, Vanessa
Stricker, and Prof. Klaus Pohl for reviewing and commenting on
the experiment’s models and materials.

8. REFERENCES
[1] Cook, T.D. and Campbell, D.T. 1979. Quasi-

Experimentation: Design and Analysis Issues.
Houghton Mifflin, Boston, Massachusetts.

[2] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid,
K., and Wąsowski, A. 2012. Cool features and tough
decisions: a comparison of variability modeling
approaches. In Proceedings of the Proceedings of the
Sixth International Workshop on Variability Modeling

of Software-Intensive Systems (Leipzig,
Germany2012), ACM, 2110167, 173-182. DOI=
http://dx.doi.org/10.1145/2110147.2110167.

[3] Czarnecki, K. and Kim, C.H.P. 2005. Cardinality-
based feature modeling and constraints: a progress
report. In International Workshop on Software
Factories at OOPSLA ACM, San Diego, California,
USA.

[4] Djebbi, O. and Salinesi, C. 2006. Criteria for
Comparing Requirements Variability Modeling
Notations for Product Lines. In Workshops on
Comparative Evaluation in Requirements
Engineering, S. Camille Ed., 20-35.

[5] Figl, K. and Derntl, M. 2011. The impact of perceived
cognitive effectiveness on perceived usefulness of
visual conceptual modeling languages. In Proceedings
of the Proceedings of the 30th international
conference on Conceptual modeling (Brussels,
Belgium2011), Springer-Verlag, 2075154, 78-91.

[6] Figl, K. and Laue, R. 2011. Cognitive Complexity in
Business Process Modeling. In Advanced Information
Systems Engineering, H. Mouratidis and C. Rolland
Eds. Springer Berlin / Heidelberg, 452-466. DOI=
http://dx.doi.org/10.1007/978-3-642-21640-4_34.

[7] Figl, K., Mendling, J., and Strembeck, M. 2013. The
Influence of Notational Deficiencies on Process Model
Comprehension. Journal of the Association for
Information Systems 14, 6.

[8] Gomaa, H. 2004. Designing Software Product Lines
with UML: From Use Cases to Pattern-Based
Software Architectures. Addison Wesley Longman
Publishing Co.

[9] Harel, D. and Rumpe, B. 2004. Meaningful Modeling:
What's the Semantics of "Semantics"? Computer 37,
10, 64-72. DOI=
http://dx.doi.org/10.1109/mc.2004.172.

[10] Haugen, Ø. 2012. Common Variability Language
(CVL) – OMG Revised Submission. OMG document
ad/2012-08-05.

[11] Haugen, Ø., Møller-Pedersen, B., and Oldevik, J.
2005. Comparison of System Family Modeling
Approaches. In Software Product Lines, H. Obbink
and K. Pohl Eds. Springer Berlin Heidelberg, 102-112.
DOI= http://dx.doi.org/10.1007/11554844_12.

[12] Heidenreich, F., Sánchez, P., Santos, J., Zschaler, S.,
Alférez, M., Araújo, J., Fuentes, L., Kulesza, U.,
Moreira, A., and Rashid, A. 2010. Relating Feature
Models to Other Models of a Software Product Line.
In Transactions on Aspect-Oriented Software
Development VII, S. Katz, M. Mezini and J. Kienzle
Eds. Springer Berlin Heidelberg, 69-114. DOI=
http://dx.doi.org/10.1007/978-3-642-16086-8_3.

[13] Heymans, P., Schobbens, P.Y., Trigaux, J.C.,
Bontemps, Y., Matulevicius, R., and Classen, A. 2008.
Evaluating formal properties of feature diagram
languages. Software, IET 2, 3, 281-302. DOI=
http://dx.doi.org/citeulike-article-id:3020746.

[14] Istoan, P., Klein, J., Perouin, G., and Jezequel, J.-M.
2011. A Metamodel-based Classification of
Variability Modeling Approaches. In VARiability for
You Workshop, 23–32.

[15] Jayaratna, N. 1994. Understanding and Evaluating
Methodologies: NIMSAD, a Systematic Framework.
McGraw-Hill, Inc.

49

[16] Kim, J., Hahn, J., and Hahn, H. 2000. How Do We
Understand a System with (So) Many Diagrams?
Cognitive Integration Processes in Diagrammatic
Reasoning. INFORMATION SYSTEMS RESEARCH
11, 3, 284-303. DOI=
http://dx.doi.org/http://dx.doi.org/10.1287/isre.11.3.28
4.12206.

[17] Krogstie, J., Sindre, G., and Jørgensen, H.D. 2006.
Process Models Representing Knowledge for Action:
a Revised Quality Framework. European Journal of
Information Systems 15, 1, 91-102.

[18] Kumar, S. and Karoli, V. 2011. Handbook Of Business
Research Methods. Thakur Publishers.

[19] Matinlassi, M. 2004. Comparison of software product
line architecture design methods: COPA, FAST,
FORM, KobrA and QADA. In Software Engineering,
2004. ICSE 2004. Proceedings. 26th International
Conference on, 127-136. DOI=
http://dx.doi.org/10.1109/icse.2004.1317435.

[20] Moody, D.L. 2006. What Makes a Good Diagram?
Improving the Cognitive Effectiveness of Diagrams in
IS Development. In 15th International Conference on
Information Systems Development (ISD 2006),
Budapest, Hungary.

[21] Moody, D.L. 2009. The “Physics” of Notations:
Towards a Scientific Basis for Constructing Visual
Notations in Software Engineering. IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING
35, 5, 756-779.

[22] Mylopoulos, J. 1992. Conceptual Modeling and Telos.
In Conceptual Modeling, P. Loucopoulos and R.
Zicari Eds. John Wiley and Sons, New York, 49-68.

[23] Parsons, J. and Cole, L. 2005. What do the Pictures
mean? Guidelines for Experimental Evaluation of
Representation Fidelity in Diagrammatical Conceptual
Modeling Techniques. Data and Knowledge
Engineering 55, 3.

[24] Pohl, K., Böckle, G., and Van Der Linden, F. 2005.
Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer.

[25] Recker, J. 2010. Continued Use of Process Modeling
Grammars: The Impact of Individual Difference
Factors. European Journal of Information Systems 19,
1, 76-92.

[26] Reinhartz-Berger, I. and Sturm, A. 2009. Utilizing
domain models for application design and validation.
Inf. Softw. Technol. 51, 8, 1275-1289. DOI=
http://dx.doi.org/10.1016/j.infsof.2009.03.005.

[27] Reinhartz-Berger, I. and Tsoury, A. 2011.
Experimenting with the Comprehension of Feature-
Oriented and UML-Based Core Assets. In Enterprise,
Business-Process and Information Systems Modeling,
T. Halpin, S. Nurcan, J. Krogstie, P. Soffer, E. Proper,
R. Schmidt and I. Bider Eds. Springer Berlin
Heidelberg, 468-482. DOI=
http://dx.doi.org/10.1007/978-3-642-21759-3_34.

[28] Reinhartz-Berger, I. and Tsoury, A. 2011.
Specification and Utilization of Core Assets: Feature-
Oriented vs. UML-Based Methods. In Advances in
Conceptual Modeling. Recent Developments and New
Directions, O. Troyer, C. Bauzer Medeiros, R. Billen,
P. Hallot, A. Simitsis and H. Mingroot Eds. Springer
Berlin Heidelberg, 302-311. DOI=
http://dx.doi.org/10.1007/978-3-642-24574-9_38.

[29] Schobbens, P.-Y., Heymans, P., and Trigaux, J.-C.
2006. Feature Diagrams: A Survey and a Formal
Semantics. In Proceedings of the Proceedings of the
14th IEEE International Requirements Engineering
Conference (2006), IEEE Computer Society, 1174002,
136-145. DOI= http://dx.doi.org/10.1109/re.2006.23.

[30] Shadish, W., Cook, T., and Campbell, D. 2001.
Experimental and quasi-experimental designs for
generalized causal inference. Houghton Mifflin.

[31] Siau, K. and Loo, P.-P. 2006. Identifying Difficulties
in Learning UML. Information Systems Management
23, 3, 43-51.

[32] Sinnema, M. and Deelstra, S. 2007. Classifying
variability modeling techniques. Information and
Software Technology 49, 7, 717-739. DOI=
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.200
6.08.001.

[33] Svahnberg, M., Aurum, A., and Wohlin, C. 2008.
Using students as subjects - an empirical evaluation.
In Proceedings of the Proceedings of the Second
ACM-IEEE international symposium on Empirical
software engineering and measurement
(Kaiserslautern, Germany2008), ACM, 1414055, 288-
290. DOI=
http://dx.doi.org/10.1145/1414004.1414055.

[34] Sweller, J. 1988. Cognitive load during problem
solving: Effects on learning. Cognitive Science: A
Multidisciplinary Journal 12, 2, 257-285.

[35] Wertheimer, M. 1938. Laws of organization in
perceptual forms. In A sourcebook of Gestalt
psychology, W.D. Ellis Ed. Routledge and Kegan
Paul, London, UK.

[36] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.,
Regnell, B., and Wesslén, A. 2000. Experimentation
in Software Engineering – An Introduction. Kluwer
Academic Publishers.

[37] Ziadi, T. and Jezequel, J.-M. 2006. Software Product
Line Engineering with the UML: Deriving Products.
In Software Product Lines, T. Käköla and J. Duenas
Eds. Springer Berlin Heidelberg, 557-588. DOI=
http://dx.doi.org/10.1007/978-3-540-33253-4_15.

[38] Zugal, S., Pinggera, J., Weber, B., Mendling, J., and
Reijers, H.A. 2012. Assessing the Impact of Hierarchy
on Model - A Cognitive Perspective. In EESSMod.

50

Appendix: Mobile Phones Models

Figure 7. Part of the CVL model of mobile phones: relations to the base model

Figure 8. Part of the OVM model of mobile phones: relations to the base model

51

