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a b s t r a c t

The main aim of this study is to investigate human understanding of process models and to develop an
improved understanding of its relevant influence factors. Aided by assumptions from cognitive
psychology, this article attempts to address specific deductive reasoning difficulties based on process
models. The authors developed a research model to capture the influence of two effects on the cognitive
difficulty of reasoning tasks: (i) the presence of different control-flow patterns (such as conditional or
parallel execution) in a process model and (ii) the interactivity of model elements. Based on solutions to
61 different reasoning tasks by 155 modelers, the results from this study indicate that the presence of
certain control-flow patterns influences the cognitive difficulty of reasoning tasks. In particular,
sequence is relatively easy, while loops in a model proved difficult. Modelers with higher process
modeling knowledge performed better and rated subjective difficulty of loops lower than modelers with
lower process modeling knowledge. The findings additionally support the prediction that interactivity
between model elements is positively related to the cognitive difficulty of reasoning. Our research
contributes to both academic literature on the comprehension of process models and practitioner
literature focusing on cognitive difficulties when using process models.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cognitive research has got a long tradition in the context of
system development. Cognitive challenges in programming – and in
reading and understanding data and process models – have been
studied extensively to better match system engineering methods
and human cognitive capabilities (Burton-Jones et al., 2009;
Gemino and Wand, 2004; Hoc et al., 1990). Unlike computers,
which can easily process program code and translated conceptual
models of arbitrary size, human understanding is influenced by
cognitive biases and irrational beliefs (Green et al., 2009).

Process models are conceptual models commonly applied to
document and communicate processes and provide a bridge
between system support and organizational requirements
(Rosemann, 2006). Process modeling is a critical step in the analysis
and development of automated execution support for processes.
Human understanding of process models is particularly relevant
because process models usually involve many tasks, which “must be
enacted by a human rather than a machine” (Curtis et al., 1992, p. 75).
However, the cognitive understanding and use of such models may
be error-prone, especially for novices. Therefore, human interaction

with process models is a relevant new research field. Several
attempts have been made to identify influence factors of process
model understanding (e.g., Figl et al., 2013a; Figl et al., 2013b;
Mendling et al., 2012; Reijers and Mendling, 2011) and process
model creation (e.g., Recker et al., 2012).

In this article, we focus on how humans reason on the basis of
process models. While a variety of previous studies in this research
stream have related model comprehension to global complexity
metrics of process models (e.g., size, the number of specific model
elements, labeling, layout,…) (Mendling et al., 2010b; Mendling
et al., 2012; Reijers and Mendling, 2011), little is known about
what exactly makes it difficult for humans to reason on the basis of
a process model. It is in particular the comprehensibility of local
properties of model structures as well as the interactivity between
model elements that have not been studied in detail. Therefore,
this article examines the cognitive difficulty of understanding
specific parts of a process model instead of considering the model
as a whole. Theoretically, it builds on cognitive load theory to
explain cognitive difficulty of reasoning tasks. We propose to
conceptualize comprehension of process models as deductive
reasoning tasks, with the process model as the premise, and the
comprehension tasks as possible conclusions drawn on the basis of
the model. The article builds on a data set of comprehension
questions that allows us to evaluate the cognitive difficulty of
reasoning tasks and to relate this value to local metrics of the
model elements involved in the task.
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Related research efforts have already been undertaken in the area of
software complexity (e.g. Yang et al., 2005). In that context, researchers
have, for instance, identified measures that assign complexity values to
portions of the code. By visualizing such measures in combinationwith
code lines, the reader of a program could be alerted that a specific part
of the code required special attention (Umphress et al., 2006). Likewise,
knowledge gained in this study could inform modeling tool designers
about process model structures with a sophisticated cognitive difficulty
which enables them to design similar tool-based feedback. From a
theoretical perspective, this study makes a contribution to the body of
literature by providing the first empirical analysis of relevant influence
factors for local comprehensibility of process models.

2. Deductive reasoning with process models

2.1. Deductive reasoning

Both comprehension and correct interpretation of models are
relevant for many different tasks (Burton-Jones et al., 2009). In this
context, Dumas et al. (2013, p. 63) state that “a thorough understanding
is the prerequisite to conduct process analysis, redesign or execution.”
Asking comprehension questions is the most commonway to measure
comprehension of process models (e.g. Mendling et al., 2012;
Reijers and Mendling, 2011). Such comprehension questions can be
characterized as deductive reasoning tasks, since correct answers can
be derived from general knowledge on process-flow logic and the
specific process model. The questions require deductive reasoning,
which is defined as the “mental process of making inferences that are
logical” (Johnson-Laird, 2010, p. 8). While the “classical” psychological
research on deductive reasoning has predominantly focused on
propositional (based on negation and connectives as if, or and and)
and predicate reasoning (based on quantifiers as all, some or no),
concepts related to process logic have largely been neglected.

In deductive reasoning, a clear distinction is made between content
and form. For instance, in the case of the formmodus ponens with two
premises (A implies B, A is true), the conclusion (B is true) is always
valid if the premises are true, regardless of the premises’ content. A and
B can be substituted by any content and the conclusion will still be
valid. For process models, this means that the verbal labels in the
models and comprehension tasks could be substituted by any kind of
label, e.g. abstract numbers, and the logical soundness of a conclusion
would still be the same. Fig. 1 provides an example of a process model
with abstract labels and four sound conclusions regarding the two
model elements D and H. The conclusions refer to a single process
instance, i.e. a single execution of a business case according to the rules
described in the business process model. Process instances are created
and executed based on the process logic defined in themodel (Rinderle

et al., 2004). The model uses the widespread Business Process Model
and Notation (BPMN) standard. Rectangles with rounded corners
depict a task. Arrows between elements indicate in which order the
tasks can be executed. The diamond symbol is used tomodel a decision
and the diamond symbol with a “þ” symbol inside is used to model
the start and end of parallel execution.

A typical approach in research on deductive reasoning is the use of
frequency tables of the correct solutions to different logical arguments
to better analyze how humans intuitively reason and to contrast their
reasoning with formal logic (e.g. Beller and Spada, 2003; Braine et al.,
1995). A major result of such studies is that humans do not necessarily
reason logically but apply heuristics and are often subject to fallacies.
For instance, according to the “post hoc ergo propter hoc” fallacy,
humans assume “that a particular event, B, is caused by another event,
A, simply because B follows A in time” (Damer, 2013, p. 242). Thus,
humans tend to misinterpret a temporal sequence for a causal
connection. By the same token, we are interested in how far humans
reason logically on the basis of process models, whether specific
reasoning fallacies do occur and whether some inferences are more
difficult than others. In the following sections, we want to discuss
several influence factors for the cognitive difficulty to reason on the
basis of a process model.

2.2. Cognitive load and deductive reasoning

From a cognitive point of view, the human working memory is the
main component involved in deductive reasoning with process models.
The term ‘working memory’ “refers to a brain system that provides
temporary storage and manipulation of the information necessary for
such complex cognitive tasks as language comprehension, learning, and
reasoning” (Baddeley, 1992, p. 556). If working memory is overburdened,
reasoning errors are more likely to occur (De Neys et al., 2005; Süß et al.,
2002).

In contrast to typical deductive arguments (in the form of two
premises and a conclusion), process models as premises are not single
but compound premises which makes deductive reasoning tasks fairly
complex. So far, no current theory has explicitly addressed cognitive
load demands in reasoning with process models. However, we can
draw on theories from related areas, e.g. profound theories on the
cognitive processes that are performed by programmers to understand
a piece of software. The challenge to reason on the basis of a process
model is fairly similar to the process of understanding facts from
software code: (i) Control-flow structures such as conditional execution
or loops need to be considered; (ii) Control-flow structures can be
nested, and the information (the process model or the code) can be
traced by the reader in an arbitrary order. Therefore, it is reasonable to
assume that the process of reasoning in a business process model can
be described as an adaption of the model for the process of program

Premises: An example process model Possible sound conclusions for a single execution 
of the process
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D and H cannot be executed in parallel.
H can be executed more often than D.
D and H can both be executed in a process  
instance.
D is executed before H.

Fig. 1. Process model comprehension tasks as reasoning tasks.
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understanding described by Cant et al. (1995). This model suggests
that, in order to understand a section of code, the programmer
performs both chunking and tracing. Chunking refers to recognizing
a group of statements and memorizing it as a single reference (a
“chunk”). In business process models, chunking involves identification
of model elements (such as tasks and gateways) that can be considered
a group of elements “belonging together”. Control-flow patterns (van
der Aalst et al., 2003) are typical structures for building such groups of
related elements. Tracing can be described as scanning through a
program (or a business process model) in order to identify relevant
chunks. Cant et al. (1995) point out that the cognitive difficulty of
solving a programming inquiry is determined by the complexity of the
chunks and the difficulty in moving between them. Thus, when
investigating reasoning in process models, we also need to consider
the following two aspects: (i) the types of involved control-flow patterns
(as candidates for chunks) and (ii) the relations between the elements
representing those patterns, affecting moving between them (element
interactivity). Bearing this in mind, the following sections will detail the
cognitive load of element interactivity and control-flow patterns in
process models. We will then describe how human process modeling
expertise may ease identification of patterns in process models and
reduce cognitive load. Finally, we also discuss whether the phrasing of
a reasoning task may increase potential reasoning bias.

2.2.1. Element interactivity
Process models usually include more elements than those needed

to solve a specific reasoning task. Not all elements of a process model
are therefore of equal importance to a specific task. On the contrary, it
might be sufficient to understand just a small detail of the model to
find a correct solution. Thus, when reasoning on various pairs of
elements in a model, the reasoning difficulty will vary depending on
the selection of those elements. The level of interactivity between the
elements determines the number of model elements that really require
attention. Elements interact if interrelated, such, that it is necessary to
assimilate them simultaneously (Sweller, 1994). High interactivity
results in high cognitive load, because each element has to be
processed with reference to other elements. In contrast, cognitive load
is low when the elements can be processed serially, without referring
to other elements. Indeed, empirical studies have revealed that a high
interactivity betweenmodel elements can make a model more difficult
to understand (Guceglioglu and Demirors, 2005; Vanderfeesten et al.,
2008). This line of reasoning is further supported by the fact that with a
higher number of model elements, overall cognitive difficulty and the
number of errors in the models increase (Mendling et al., 2007a;
Mendling et al., 2010a).

2.2.2. Control-flow patterns
Second, we turn to control-flow patterns (control structures) in

process models and the cognitive difficulty to understand them.
Control-flow patterns refer to “activities and their execution order-
ing through different constructors” (van der Aalst et al., 2003, p. 6).
Execution ordering involves basic control structures such as
Sequence, Loops (also known as iteration, or cycles), the AND-pattern

(parallel execution) and the XOR-pattern (conditional execution).
For the purpose of this article, we examine the impact of the most
basic control-flow patterns as summarized in Table 1.

We are interested in whether the control-flow patterns AND,
XOR or Loop are more difficult to understand than the simple
Sequence pattern and whether, as a consequence, cognitive diffi-
culty of deductive reasoning tasks differs depending on the
control-flow patterns involved. So far, few studies have been
performed on the cognitive aspects of understanding such control
structures in process models. However, based on the similarity
between structures in software code and process models
(Guceglioglu and Demirors, 2005; Vanderfeesten et al., 2008),
we can draw on research findings on program code complexity
as a basis for hypothesizing about the cognitive difficulty of
control-flow patterns. The area of procedural code complexity
(Tegarden et al., 1995) considers sequences, decision structures
and loops and, therefore, is an appropriate equivalent to analyzing
control structures of process models. Cater et al. (1984), for
instance, propose to calculate logical effort of code on the basis
of decomposing a program into structural elements like loops or
decisions. Cant et al. (1995, p. 357) argue that “intuitively, a
conditional control structure is more complex to understand than
a normal sequential section of code.” Shao and Wang (2003)
propose different cognitive weights for basic control structures.
They rate sequence as the easiest (weight¼1), followed by
branching (XOR) (weight¼2), iteration (loops) (weight¼3),
embedded components (weight¼2–3) and parallel execution
(AND) as most difficult (weight¼4). However, a serious weakness
of this proposal is that it is not based on empirical evidence.

Previous research on process models suggests that understand-
ing their control-flow is generally difficult for humans (Mendling
et al., 2010a). Current research results revealed that some kinds of
control-flow constructs are more difficult to understand than
others. However, different authors provide seemingly conflicting
positions and no single study exists which adequately covers
comprehension of control-flow constructs. For example, Sánchez-
González et al. (2012) conclude that XORs are more difficult to
understand than AND patterns. In contrast, Weitlaner et al. (2013),
who investigated the cognitive difficulty of control-flow elements in
a comprehension study with practitioners, found slightly lower
comprehension scores for concurrency in comparison to order, XOR
and repetition. Based on a small number of user feedbacks, they
reported specific problems of users with concurrency. However, it
remains unclear whether the differences they had found were
statistically significant and whether they actually resulted from
problems understanding AND or rather from the fact that the
practitioners simply did not know the notation. Modeling guide-
lines recommend to avoid inclusive OR gateways altogether, as they
may lead to reasoning fallacies (Mendling et al., 2010a). The higher
cognitive difficulty of inclusive ORs is also reflected in findings on
deductive reasoning with natural language connectives. “Or” is
more likely to be interpreted in its exclusive form, not as an
inclusive “or”-operator (Naess, 1961). Based on the low relevance

Table 1
Description of control flow patterns.

Control-flow
pattern

Description

Sequence Tasks are executed in succession.
AND A pair of an AND-split and an AND-join, allowingZ2 paths to be executed in parallel (control-flow patterns “Parallel Split” and “Synchronization”)
XOR A pair of an XOR-split and an XOR-join with the meaning that exactly one out ofZ2 possible paths is chosen and executed (control-flow patterns

“Exclusive Choice” and “Simple Merge”).
Loop A loop in the model that allows the repeated execution of some part of the model (can be one of the control-flow patterns “Structured Loop” and

“Arbitrary Cycles”).
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of inclusive ORs in modeling practice, we refrain from including
them in our study.

2.3. Modeling knowledge

In empirical research on system development, a growing body
of literature has investigated how novices and experts differ (e.g.
Davies, 1994; Gilmore, 1990). For instance, when less experienced
modelers create new conceptual models, they demonstrate more
difficulties in understanding the problem and integrating problem
facets than modelers with profound modeling knowledge do. This
leads to lower quality models regarding several characteristics
such as correctness, completeness or innovativeness (Batra and
Davis, 1992; Shanks, 1997). Thus, modelers with higher modeling
knowledge are not only faster but their cognitive processing also
changes in a qualitative way. Similarly, in the context of conceptual
modeling, Petre (1995, p. 34) has claimed that “experts ‘see’
differently and use different strategies than novice graphical
programmers”. Studies have revealed, for instance, that they
develop language-independent, abstract problem representations
in their mind, e.g., for iterations (e.g. Rist, 1989). These ‘schemas’ –
constructs that merge multiple elements of information into one
concept – are stored in long-term memory. This way, the working
memory does not have to store those elements individually but
can deal with a ‘schema’ as just one piece of information.
Consequently, there are more free working memory resources
for the same reasoning task. Unlike novices, people with a higher
programming knowledge memorize program structures as pat-
terns. When developing program elements, they plan on a higher,
abstract level (Bateson et al., 1987).

2.4. Validity of conclusion

While it can be objectively determined whether a given conclu-
sion is valid in a deductive reasoning task, its phrasing as well as the
validity of the conclusion may lead to reasoning biases. According to
the “atmosphere-effect” (Woodworth and Sells, 1935) and the
“matching-strategy” (Wetherick and Gilhooly, 1995), wording of the
premises and conclusion is relevant for the relative difficulty of
deductive reasoning tasks. For instance, if the premises are affirma-
tive, the participants are more likely to accept an affirmative
conclusion (Woodworth and Sells, 1935). To give an example, based

on the two premises “If some X’s are Y’s, and some Y’s are Z’s”,
studies show that 72% of humans tend to wrongly accept the invalid
conclusion “then: Some X’s are Z’s” (Wetherick and Gilhooly, 1995;
Woodworth and Sells, 1935). Thus, they employed a matching
strategy instead of relying on deductive reasoning.

3. Research model

Based on the theoretical assumptions described above, we will
now discuss the anticipated effects of the four supposed relevant
influence factors on the cognitive difficulty of a deductive reason-
ing task (viz., a specific comprehension task based on a process
model). We summarize our expectations in the research model
shown in Fig. 2. Overall, our model aims to contribute to research
on reading, analyzing and using process models. The ability to
deduce correct conclusions based on the ‘premises’ expressed in a
process model is relevant to almost any situation in which the
comprehension of the model is necessary for analysis or reengi-
neering tasks (Burton-Jones et al., 2009).

First, we turn to the influence of expertise in the area of process
modeling. In light of the theoretical considerations on novice and
advance modelers above, it can be assumed that there are differences
between modelers with lower or with higher process modeling
knowledge when it comes to logic reasoning on a process model:
While the modelers with higher process modeling knowledge
presumably have stored schemas in long-term memory that allow
them to process a group of model elements (such as all those
elements that build a certain control-flow pattern) simultaneously,
modelers with lower process modeling knowledge have to split their
cognitive resources for the individual model elements. The higher the
cognitive load the lower the ability to make valid conclusions. This is
in line with the results by Mendling et al. (2012a) who have shown a
positive influence of modeling knowledge and experience on the
ability to understand process models. Thus, we contend that mode-
lers with higher process modeling knowledge will be better in
solving deductive reasoning tasks and will also experience these
tasks as easier than modelers with lower process modeling knowl-
edge. Therefore we assume:

H1. It is more difficult for modelers with lower process modeling
knowledge to solve deductive reasoning tasks in a process model
than it is for modelers with higher process modeling knowledge.

KEY
F: Theoretical Factor   
O: Operationalization of Factor

Deductive Reasoning Task
F: Control Flow Pattern
O:

• Sequence
• XOR
• AND 
• Loop
• (Compound)

Cognitive Difficulty

F: Objective Cognitive Difficulty
O: Item Difficulty

F: Subjective Cognitive Difficulty
O: Subjective Rating of Cognitive 

Load

F: Element Interactivity
O: Process-Structure-Tree Distance
O: Cut-Vertex

Knowledge on Process Modeling 

F: Validity of Conclusion
O: Valid/Wrong 

F: Process Modeling Knowledge
O: Process Modeling Test Score

Fig. 2. Research model.
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Second, we turn to different control-flow patterns. Previous
research comparing different control structures in program code
(Cant et al., 1995; Shao and Wang, 2003) and in process models
(Sánchez-González et al. 2012) suggests that cognitive difficulty of
comprehending control-flow patterns varies. Therefore, we contend
that the cognitive difficulty of a reasoning task is influenced by the
type of involved control-flow patterns. Therefore we assume:

H2. The type of control-flow patterns that has to be understood
(such as Sequence, “parallel split” [AND] for parallel execution or
“exclusive choice” [XOR] for conditional execution and Loop) has
an influence on the cognitive difficulty in reasoning.

While there are compelling arguments from literature that
Sequence, as the very basic control-flow pattern, has a lower
cognitive difficulty than other more complex patterns (Cant
et al., 1995), previous research does not suggest further clear-cut
differences among the cognitive difficulties of different control-
flow patterns. However, we assume that a reasoning task will be
more difficult when it involves a combination of multiple patterns
that would probably add up to a greater cognitive load. We will
call a combination of more than one pattern other than the simple
Sequence pattern (viz., a combination of parallel or conditional
execution and iteration) a Compound pattern. Please note that this
term does not refer to a standardized pattern, it is rather used as
an abbreviation for “more than one control-flow pattern other
than Sequence.” We hypothesize that such Compound patterns are
of a higher cognitive difficulty than single patterns. Therefore, we
are particularly interested in the following hypotheses:

H2a. Reasoning tasks that require only the Sequence pattern to be
understood are easier to solve than those for which other (non-
trivial) patterns are involved.

H2b. Reasoning tasks that require a Compound pattern (i.e., more
than one control-flow pattern [other than the simple Sequence
pattern]) to be understood are more difficult to solve than reason-
ing tasks for which only a single control-flow pattern has to be
considered for finding the correct answer.

Third, we turn to the interactivity between elements. We
expect that if it is necessary for a reasoning task to consider a
high number of model elements and their interrelations, the
cognitive load will be higher (Sweller, 1994). On the basis of this
argument, we thus propose the following hypothesis:

H3. The interactivity between elements will be positively associated
with the cognitive difficulty of a reasoning task including them.

Fourth, we turn to the validity of the conclusion. According to
the atmosphere and the matching hypotheses, it is relevant
whether there is a consistency between affirmativeness of pre-
mises and conclusions. We speculate that a typical process model
is an “affirmative” presentation of the premises, in case the
conclusion is valid. This is because typical process models are
imperative, meaning that they “require all execution alternatives
to be explicitly specified in the model” (Pichler et al., 2012). Unlike
the uncommon “declarative” process models, which would focus
on constraints and impossible process executions, an imperative
process model specifies all possible alternatives and visually
presents all possible instantiations of the process. If an (affirma-
tively formulated) conclusion is valid, the “affirmative” nature of
the process model represents the same affirmative “atmosphere”,
and, as a result, the “atmosphere” bias supports providing a
correct answer. Thus, we anticipate the following:

H4. It is easier to correctly identify (affirmatively worded) valid
conclusions of a process model than invalid conclusions.

4. Design and measures

In order to test our hypotheses, we use a subset of a large data set
of answers to process model comprehension questions (Figl et al.,
2013b).1 We want to point out that we analyzed comprehension
values on task level (viz., each comprehension question constitutes a
specific reasoning task). Answers to the questions were aggregated
(across all participants) for two groups: modelers with lower modeling
knowledge and modelers with higher modeling knowledge. Thus, we
obtained four averaged estimates of cognitive difficulty for each
reasoning task (one for subjective and one for objective difficulty, for
each of the two groups, respectively). In the following section, we
present the background of the dataset, the construction of the process
models and the selection of measures used to determine subjective
and objective cognitive difficulty of reasoning tasks. Then, we describe
how we measured element interactivity and determined type of
control flow pattern relevant to a reasoning task.

4.1. Materials: questionnaire parts

We administered a pencil-and paper questionnaire. The first
part comprised items on subjects' demographic data, academic
qualifications and modeling experience. We asked the subjects to
rate the amount of process models they had already created or
read and to estimate the amount of hours of modeling training
attended (at school or at university).

The next part of the questionnaire contained questions adapted
from the theoretical knowledge test of process modeling by
Mendling et al. (Mendling and Strembeck, 2008; Mendling et al.,
2012). Examples of test items were “Exclusive choices can be used
to model repetitions” and “If an activity is modeled to be part of a
loop, it has to be executed at least once”. Using a previously
existing test, we follow a suggestion of Siegmund and Schumann
(2014, p. 21) on how to measure experience in the context of
comprehension experiments: “researchers can use a validated
instrument… instead of using an ad hoc definition that differs
between different experiments and researcher groups.” This way,
the subjects’ subjective ratings of their experience with process
models were complemented with an objective measurement of
process modeling knowledge. Experience is a major confounding
parameter in such comprehension experiments.

Moreover, the questionnaire included a tutorial on process
modeling, which was intended to recall the meaning of each
symbol used and covered all aspects the subjects would need to
know in order to perform the reasoning tasks. The main part of the
questionnaire contained four different process models with eight
corresponding deductive reasoning tasks per model. The following
two Sections 4.2 and 4.3 describe details of the choice of models
and tasks. Appendix A gives an example of a process model and its
corresponding reasoning tasks.

To measure the perceived (subjective) difficulty of the reason-
ing tasks, we asked the subjects to rate each task on a seven-point,
single-item cognitive load measure (with the labels “very diffi-
cult”, “difficult”, “rather difficult”, “neither difficult nor easy”,
“rather easy”, “easy” and “very easy”) as proposed by Marcus
et al. (1996). To avoid order effects due to decreasing motivation or
concentration of subjects we used two different scramblings.
Models as well as reasoning tasks were presented in different
orders. The subjects were allowed to spend as much or as little
time as desired on the questionnaire.

1 This larger data set has been used to study another research question – the
understandability of different visual gateway symbols. By selecting the data subset
for which the design of the symbols did not impose additional burdens we avoided
unnecessary “noise” and variance in answers.
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4.2. Choice of process models

We used four different models as a basis for presenting the
deductive reasoning tasks. Two of them were drawn from the
business domain (Product Management and Customer Relationship
Management). The other two were taken from relatively uncommon
domains: an emergency process plan for drinking-water pollution
and an e-mail election process (the last process was taken from the
BPMN standard document, Object Management Group, 2013).

We used models with concrete instead of abstract labels in
order to make results valid for real models in practice. We chose to
use a verb-object labeling style as this is the most frequently
suggested naming convention (Leopold et al., 2013). Abstract
labels might limit the generalizability because research revealed
that material with abstract labels has a slightly different effect on
human reasoning than material with content labels (Beller and
Spada, 2003; Markovits et al., 2002), which also eases model
comprehension (Mendling et al., 2012).

4.3. Choice of reasoning tasks

Eight different reasoning tasks were devised for each of the
four models. This is in concurrence with Evans (1972) who
proposed to use a variety of reasoning tasks to be able to relate
results to underlying cognitive operations. Too few reasoning tasks
could result in the misinterpretation of single sentences in the
tasks by the subjects and invalid results. The wording of the tasks
was based on comprehension questions developed by Reijers et al.
(2011) and Melcher et al. (2010) and refers to different relations
between model elements. For each model, we asked two questions
for each of the following question types: “A and B can be executed
at the same point of time”, “A and B can be executed in parallel”,
“In one process instance A as well as B can be executed”, “The
process steps A and B are mutually exclusive”, “A can be executed
more often than B”, “In each process instance A is executed exactly
as often as B”, “If A as well as B are executed in a process instance,
then A is executed before B” and “If A as well as B are executed in a
process instance, then A has to be finalized before B can start.”
Unlike Reijers et al. (2011) and Melcher et al. (2010), we used
consistent questions so that subjects had always to consider two
model elements (two activities). This was necessary for the
comparison of the results of the reasoning tasks with each other.
Although the individual process element labels used in the
reasoning tasks were meaningful (e.g. “dig off soil” and “buy
new equipment”), we assured that the correctness of the stated
relation between them (e.g. “are mutually exclusive”) could only
be answered based on the process model and not based on every-
day knowledge (as for instance in a reasoning task such as
“‘Accepting offer’ and ‘declining offer’ are mutually exclusive”).

All comprehension questions were formulated in a way that they
did not include negations (e.g., we ask whether “A and B can be
executed in parallel”, and not “A and B cannot be executed in
parallel”). Additionally, we ran a pre-test to ascertain that the wording
was comprehensible for the subjects (Laue and Gadatsch, 2011).

When compiling the test material, we alternated correct and
incorrect answers. This variation was required to investigate the
factor “validity of conclusion”. To further enhance the variety of
different reasoning tasks, we used two versions of the questionnaire
(versions A and B), resulting in 64 different reasoning tasks. In both
versions, exactly the same models were used.

4.4. Measurement of element interactivity

In this section, we will discuss how we operationalized element
interactivity in the process models through two different metrics.
For defining these metrics, we consider a process model as a

directed graph without referring to the semantic meaning of its
nodes. In addition, the measures do not take into account which
types of gateways are relevant for answering a question, since the
factor “control-flow patterns” covers this point.

4.4.1. Process structure tree distance
In order to define a measure for the cognitive load resulting

from a reasoning task involving two elements in a process model,
we follow the idea of Vanhatalo et al. (2009) to decompose the
process model into canonical fragments with a single entry and a
single exit. These fragments can be arranged in a process structure
tree distance in a way that there is exactly one process structure
tree for each process model. Fig. 3 shows an example process
model and its corresponding process tree.

We argue that the distance between two elements in the
process structure tree can serve as a measure for the interactivity
between those elements. Each fragment in the tree represents one
concept (for example, the concept of an exclusive choice or the
concept of parallel branching) that the reader of the model has to
understand. If elements are located in deeply nested control-flow
blocks, the reader has to understand a large number of concepts
before being able to answer a question concerning the relation
between those elements. On the other hand, if both elements are
located in the same control block without additional nesting, they
will also be in the same region of the process structure tree.

Formally, we define the process structure tree distance between two
elements X and Yof a process model as the number of edges between X
and Y in the process structure tree, minus one. This means that
elements in a sequence or in the same control block (for example,
two elements that are executed in parallel without any further
branching) have a process structure tree distance of one. For instance,
the process structure tree distance betweenmodel elements D and H in
Fig. 3 is 5, while the distance between model elements D and E is 1.

4.4.2. Cut-vertices
A second aspect we took into account when discussing the

interactivity between elements A and B in a process model is the
case where a single edge in the process model separates the model
into two disjoint parts P1 and P2, such that AAP1 and BAP2. In
terms of graph theory, this means that the connected graph, that
forms the process model, has a “cut-vertex” on a path from A to B,
i.e., a vertex (edge) that, when removed, causes a disconnection in
the remaining graph. If such a cut-vertex exists between A and B,
the mental model of the relationships between A and B bec-
omes much easier, because A is located “before” and B is located
“after” an easy-to-spot reference point (the cut-vertex). The
model in Fig. 3 shows, for instance, two cut vertices (between
model element A and fragment 1, and between fragment 1 and
fragment 4).

4.5. Measurement of control-flow patterns

We used a consensus-building rating approach to determine
which control-flow patterns had to be considered to solve each
deductive reasoning task. First, two raters (the authors of the
paper) made the judgment independently, and in a next step,
inconsistencies were discussed to reach a final categorization. All
64 reasoning tasks were categorized to refer to one of the control-
flow patterns Sequence, AND, XOR, Loop and Compound. The
Compound category was used for reasoning tasks which demand
participants to understand more than one control-flow pattern
other than Sequence.
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4.6. Subjects

A total of 199 business students participated in this study
(125 males, 74 females). We categorized subjects into two groups
according to their score in the process modeling knowledge test.
We selected this test instrument to divide the students into a
group with higher process modeling knowledge and another
group with lower process modeling knowledge, because pre-
vious research has shown that theoretical knowledge is more
important to syntactical process model comprehension than
other factors such as practical experience (Mendling et al.,
2012). The use of groups is important for our subsequent
analysis, as we intend to perform statistical tests on the basis
of reasoning tasks as test subjects and not on the basis of
subjects, which would allow the use of the process model
knowledge test score as continuous covariate. Based on a
median-split of the process modeling test scores (the median
was 5 correct answers), we grouped subjects in two equally large
(extreme) groups: 72 subjects (36%) with 0–4 points (0–50% test
score) and 84 subjects (42%) with 6–8 points (75–100%). We
justify this selection with the fact that according to Preacher
et al. (2005, p. 178) extreme groups “need not be equal in size or

cover the same range of scores”. The remaining 44 subjects (22%)
with five correct answers were excluded, resulting in a sample
size of 156; 72 subjects for the group with lower process
modeling knowledge and 84 subjects for the group with higher
process modeling knowledge. Table 2 provides a summary of the
subject groups and their characteristics. As expected, the sub-
jects of the higher process modeling knowledge group had
created and read significantly more process models and had
been trained for more hours in modeling than the subjects of the
other group.

5. Data preparation

In a first step, we analyzed the quality of the reasoning tasks
from a test-theoretical point of view. For this purpose, we
calculated two indicators: the discrimination coefficient (the
correlation between single item and total score of a subject) and
discrimination index (the difference between the extreme groups
of the 27% best and worst subjects, based on the total score, cf.
Matlock-Hetzel, 1997). As cut-off value, we used the critical value
of 0.17 (that results from considering a significant Pearson

Table 2
Sample description and differences between modelers with lower / higher process modeling knowledge.

Low process modeling knowledge
(n¼72)

High process modeling knowledge
(n¼84)

Total (n¼156) Statistical test

Mean/Amount/% SD/% Mean/Amount/% SD/% Mean/Amount SD/%

Gender
Female
Male

38 53% 17 20% 55 35% �
34 47% 67 80% 101 65%

Age 22.58 3.18 24.74 4.01 23.74 3.79 �
Highest degree completed �

High school 31 43% 19 23% 50 32%
One or more years of university 36 50% 48 57% 84 54%
Bachelor 4 6% 10 12% 14 9%
Master 1 1% 7 8% 8 5%

Process modeling test score 38% 0.13 81% 0.08 61% 0.24 Tdf¼153¼�25.03, p¼0.000
Amount of process models created

or read
4.08 11.02 29.70 49.18 17.88 38.92 Tdf¼154¼�4.33, p¼0.000

Amount of modeling training (in
hours)

6.96 19.83 26.46 30.36 17.51 27.74 Tdf¼144¼�4.50, p¼0.000
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Fig. 3. Example process model and its corresponding process tree.
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correlation on a 5% significance level for a one-tailed test and a
sample size of 90) for the discrimination coefficient and 0 for the
discrimination index. A negative discrimination index or a non-
significant correlation between a single item and the total score
indicates that generally low-performing subjects scored better on
a task than high-performing ones. Such a result suggests that the
wording of items might have been unclear or ambiguous. On the
basis of this analysis, we excluded three of the 64 comprehension
questions that did not meet the defined criteria.

6. Results

In this section, we report on the results relating to our hypotheses.
For this purpose, we performed two multivariate analyses of covar-
iance (MANCOVA) tests, using SPSS 20. The objective and subjective
cognitive difficulties of the modelers with lower and higher modeling
knowledge were used as dependent variables so that process model-
ing knowledge (lower vs. higher) was a within-subject factor for each
MANCOVA. We included three independent variables in each of the
two analyses (for the dependent variables – objective and subjective
cognitive difficulty): (i) control-flow patterns with five levels
(Sequence, AND, XOR, Loop, Compound), (ii) validity of conclusion with
two levels (valid, wrong), (iii) existence of a cut vertex (existent,
nonexistent) and one covariate – the process structure tree distance.
Table 3 provides all results (F and η² are omitted in case of non-
significant results with p40.11).

6.1. Process modeling knowledge

Concerning hypothesis H1, we observed (from Table 3) that
modelers with lower modeling knowledge performed significantly
worse on the deductive reasoning tasks (F1,53¼8.05, p¼0.006) and
rated them more difficult (F1,53¼22.58, p¼0.000) than did mode-
lers with higher process modeling knowledge. Therefore, we
revealed strong evidence for hypothesis H1.

6.2. Control-flow patterns

Hypothesis H2 had predicted that the type of control-flow
patterns that were involved in answering a question had an
influence on cognitive difficulty. MANCOVA results indicated that
there was, in fact, an impact of different control-flow patterns on
the objective difficulty (F1,53¼3.19, p¼0.02). The results further
suggest that there is a trend-wise effect on subjective difficulty

(F1,53¼1.99, p¼0.11); albeit we note that this result is not sig-
nificant at the p¼0.05 level. Thus, hypothesis H1 is supported
concerning objective difficulty (percentage of correct answers) but
only tentatively with respect to subjective (perceived) difficulty. In
addition, there is an interaction effect between experience and the
difficulty of control-flow patterns. Fig. 4 demonstrates that the
percentage of correct answers of modelers with lower process
modeling knowledge was between 6 and 11% lower than those of
modelers with higher process modeling knowledge, with one
exception: reasoning tasks involving Loops. Modelers in the “lower
knowledge” group solved only 54% of those tasks correctly,
whereas modelers in the “higher knowledge” group solved 78%
of these tasks correctly (i.e., 24% more). For reasoning tasks that
required understanding the basic Sequence pattern only, we
obtained the smallest difference between both groups (6%).

We performed a post-hoc analysis (Fisher's Least Significant
Difference test) to determine which types of control-flow patterns
significantly differ from each other. Figs. 4 and 5 depict descriptive
results of cognitive difficulty of control-flow patterns. First, we turn to
results concerning objective difficulty. In general, tasks were most
difficult if they demanded to understand Loops, followed by Compound
control-flow patterns (a combination of at least two patterns other
than Sequence), AND and XOR. Tasks for which only the control-flow
pattern Sequence had to be understood were the easiest. Loops were
significantly more difficult to understand than Sequence (Mean
Diff¼17.66, SD¼5.21, p¼0.001) and XOR (Mean Diff¼12.33,
SD¼6.15, p¼0.05). AND (Mean Diff¼7.03, SD¼3.16, p¼0.03) and
Compound control-flow patterns (Mean Diff¼15.24, SD¼4.73,
p¼0.002) were bothmore difficult to understand than Sequence alone.

Concerning subjective cognitive difficulty, Compound patterns
(a combination of more than one XOR, AND and Loop) were most
difficult; they were significantly more difficult than Sequence
(Mean Diff¼0.68, SD¼0.20, p¼0.001), AND (Mean Diff¼0.52,
SD¼0.22, p¼0.02) and XOR (Mean Diff¼0.64, SD¼0.25, p¼0.01).
Additionally, Loops were more difficult than Sequence (Mean
Diff¼0.54, SD¼0.22, p¼0.02).

The results also lend support to hypothesis H2a, which had
predicted that the control-flow pattern Sequence has a lower
cognitive difficulty than other control-flow patterns. H2b had
predicted that reasoning tasks, for which a combination of more
than one control-flow pattern (other than Sequence) had to be
understood, were more difficult than if only a single control-flow
pattern was involved. H2b was partly supported for subjective
difficulty, but not supported for objective difficulty.

Table 3
Experimental results: Influence of deductive reasoning tasks on cognitive complexity. [Please note that the term “subject” in the table refers to reasoning tasks, not to the
participants who had answered them.].

Dependent variable Factor F (dfHypothesis, dfError) p η²

Objective cognitive difficulty (%) Within-subject effect Process modeling knowledge 8.051,53 0.006 0.13
Between-subject effect Control-flow pattern 3.191,53 0.02 0.19

Element interactivity: process structure tree distance 22.081,53 0.000 0.29
Element interactivity: cut-vertex 40.11
Validity of conclusion 7.531,53 0.008 0.12

Interaction effect Process modeling knowledgencontrol-flow pattern 2.711,53 0.04 0.17
Process modeling knowledgenprocess structure tree distance 40.11
Process modeling knowledgencut-vertex 40.11
Process modeling knowledgenvalidity of conclusion 40.11

Subjective cognitive difficulty Within-subject effect Process modeling knowledge 22.581,53 0.000 0.30
Between-subject effect Control-flow pattern 1.991,53 0.11 0.13

Element interactivity: process structure tree distance 17.791,53 0.000 0.25
Element interactivity: cut-vertex 40.11
Validity of conclusion 40.11

Interaction effect Process modeling knowledgencontrol-flow pattern 40.11
Process modeling knowledgenprocess structure tree distance 40.11
Process modeling knowledgencut-vertex 40.11
Process modeling knowledgenvalidity of conclusion 40.11
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6.3. Element interactivity

Two parameters were used to measure element interactivity:
(i) the process structure tree distance and (ii) the existence of a cut-
vertex. In line with our expectations, the process structure tree
distance was a significant influence factor for subjective (F1,53¼17.79,
p¼0.000) and objective difficulty (F1,53¼22.08, p¼0.000). The higher
the process structure tree distance, the lower the percentage of
correct answers and the higher the subjective cognitive difficulty.
Fig. 6 shows the percentages of correct answers, and Fig. 7 provides
the average results on the perceived difficulties across different
process structure tree distances. However, the existence of a cut-
vertex did not significantly influence cognitive difficulty. Therefore,
hypothesis H3 was only partially supported.

6.4. Validity of conclusion

Hypothesis H4 proposed that valid deductive reasoning tasks
would be easier to answer than invalid ones. As Table 3 indicates, the
validity of the conclusion did have a significant effect on objective
but not on subjective difficulty. Contrary to expectations, however,
we can derive from Fig. 8 that valid reasoning tasks were more
difficult to answer than invalid/wrong tasks. Concerning subjective
difficulty, descriptive results pointed into the same unanticipated
direction (see Fig. 9). Thus, hypothesis H4 was not supported.

Table 4 provides an overview of the results revealed regarding
the hypotheses H1–H4.

7. Discussion

This study aimed at assessing the importance of influence
factors for deductive reasoning on the basis of process models.
We identified a number of interesting results.

First, a main finding was that deductive reasoning tasks differ
in their cognitive difficulty dependent on the control-flow patterns
required to answer them. In general, reasoning tasks only
demanding an understanding of the control-flow pattern Sequence
were the easiest, followed by XOR and AND, and Compound
patterns and Loops were the most difficult. The present finding is
partly consistent with the cognitive weights proposed by Shao and
Wang (2003) concerning Sequence, XOR and Loop. However, con-
trary to their proposal, we did not reveal any evidence that AND
would be the most difficult pattern. An explanation for this
discrepancy could be that parallel execution (concurrency) in
programming code is harder to understand than its visualized
counterpart in a process model. The findings of the current study
also do not support the ideas of Sánchez-González et al. (2012),
who claimed that XORs are more difficult to understand than ANDs
in a process model. We could not reveal empirical evidence for a
difference of cognitive difficulty between AND and XOR, which was
in line with our prediction, as there do not exist strong theoretical
considerations which would suggest any difference.

Second, another important finding was that element interactivity
is positively related to reasoning difficulty. While we were unable to
find a significant confirmation regarding the existence of a cut vertex,
we obtained strong support for our hypotheses regarding a process
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structure tree distance. This effect has not been studied so far but is
comparable to the discussion of whether the nesting level in a process
model has an influence on its understandability. Mendling et al.
(2007b; 2011) did not find a significant relationship between the
nesting level and the understandability of a model. However, while
Mendling et al. regarded the nesting level as a global attribute of a
process model, we related the process structure tree distance to the
model elements that we asked for. We argue that it is important to
consider local parameters for assessing element interactivity. Even if a
process model includes deeply nested structures, single comprehen-
sion tasks might include only neighbored elements in a specific

submodel of the overall model, and thus their difficulty would not be
a representative indicator for the model as a whole. As a consequence,
we suggest to pay closer attention to the model parts actually relevant
to answer a specific reasoning task. The rest of the complex model
may have an effect on cognitive difficulty of a reasoning task. Yet, the
source of cognitive load is different insofar that it mainly complicates
the search and identification of relevant model structures.

While our results support the hypothesis that process structure
tree distance positively influences the difficulty of a task, it remains
unclear whether these results can be generalized to higher process
structure tree distances. One unanticipated finding was that the
approximately linear relationship between reasoning difficulty and
process structure tree distance did not continue for process structure
tree distances higher than five. A possible explanation for this is that
the amount of reasoning tasks was lower for high process structure
tree distances. This is because we had opted for process models of
“average” size and complexity. We recognize that larger models
would be necessary for positing reasoning tasks with higher element
interactivity and for empirically determining how the relationship
continues above a process structure tree distance of five. Based on
theoretical considerations and empirical research on the negative
effect of model size on comprehension (Mendling et al., 2007a;
Mendling et al., 2010a), it is, however, likely that cognitive load
increases even further for higher element interactivities.

In the following section, we want to discuss results concerning cut
vertices. In contrast to our results, a similar experiment byMendling and
Strembeck (2008) provided support for the hypothesis that a process
model with more cut-vertices is more easily understood, while further
studies (Mendling et al., 2007b) yielded inconsistent results on this topic.
In our study, 79.9% of the questions about two activities separated by a
cut-vertex had been answered correctly, compared to 75.8% of the
questions about two activities without a cut-vertex. While this, in fact,
points to a trend into the expected direction, it was not statistically
significant. However, it is still possible that, when repeating the study
with a larger number of models with a cut-vertex, a significant effect
could be revealed. In our study, 22 out of 61 reasoning tasks had cut
vertices. Future studies regarding this question will be required.

In line with our predictions and with previous research
(Mendling et al., 2012), we also found that modeling knowledge
reduced the objective and subjective cognitive difficulty of reason-
ing on basis of a model. Modelers with higher process modeling
knowledge performed better than modelers with lower process
modeling knowledge in all deductive reasoning tasks. Additionally,
we found that loops were especially difficult for the group with
lower process modeling knowledge. A possible explanation for this
result is that advanced modelers have already acquired cognitive
schemas for this control structure (Détienne et al., 1990).
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Table 4
Summary of hypothesis testing results.

Independent variable Dependent variable: cognitive
difficulty

Results

H1 Process modeling knowledge Objective Supported
Subjective Supported

H2 Control-flow pattern Objective Supported
Subjective Supported

H2a “Sequence” patterns are easier than other patterns Objective Supported (easier than Loops, AND and Compound patterns)
Subjective Partly Supported (easier than Compound patterns and Loops)

H2b “Compound” patterns are more difficult than other
patterns

Objective Not Supported (only more difficult than Sequence)

Subjective Partly Supported (more difficult than Sequence and XOR)
H3 Element interactivity Objective Supported for process structure tree distance but not for the existence of a

cut-vertex
Subjective Supported for process structure tree distance but not for the existence of a

cut-vertex
H4 Validity of conclusion Objective Not Supported (significant influence, but reverse effect)

Subjective Not Supported
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Surprisingly, the results we obtained concerning the validity of the
reasoning task were contradicting our original hypotheses and indi-
cated that wrong deductive conclusions were easier to identify than
correct ones. A possible explanation for this finding might be that in
some cases of a wrong deductive conclusion, it might be quite obvious
that it cannot hold true in the context of the model, and a falsifying
argument can easily be found. In contrast, verifying a conclusionmight
be harder, as it demands the ruling out of all possibly falsifying
arguments. This explanation is in line with research that has shown
that falsification strategies are especially relevant to achieve insight
into a reasoning task (Johnson-Laird andWason,1970). One suggestion
based on this finding is that in order to improve understanding, one
could provide additional information on the most important con-
straints and impossible process executions to a process model.

8. Limitations

In this section, we will consider the common caveats associated
with laboratory experiments and specific limitations of our study, in
particular possible threats to validity based on Wohlin et al. (2000).

One potential weakness of this study is the selection of
subjects. We recognize that the fact that our sample was drawn
from business school students might limit external validity. How-
ever, we believe it was more important to assure that random
heterogeneity of subjects was low – which could be a potential
threat to conclusion validity – by choosing a homogenous group of
students. Moreover, the similarity of the sample to other process
model comprehension studies (Figl et al., 2013a; Figl et al., 2013b;
Mendling et al., 2012) eases comparison of results.

A threat regarding external validity related to the fact that the
subjects in this study were not exposed to time constraints, which
does not have to reflect the situation when process models are
applied in the real world.

Concerning internal validity, the selection of modelers might
underestimate the true relationship between process modeling knowl-
edge and cognitive difficulty of reasoning. A selection of experts with
higher practical experience might lead to even stronger performance
differences between the group “lower process modeling knowledge”
and the group “higher process modeling knowledge”. However, the
modelers with higher knowledge in our sample were sufficiently
experienced to perform significantly better than the comparison
group, and, therefore, we believe that the selection of groups was
well suited to reach clear-cut results for our research questions.

Concerning construct validity, we like to discuss the selection of
reasoning tasks. A general problem when constructing deductive
reasoning tasks is that “logic allows an infinite number of different
conclusions to follow validly from any premises” (Johnson-Laird, 2010,
p. 12). On the other hand, a specific process model with a semantic
meaning sets structural constraints that limit the types of questions
that can be asked. Therefore, not all combinations of reasoning tasks
concerning different control flow patterns might result. To ensure that
operationalizations actually measure the theoretical constructs, we
used various reasoning tasks on four different models for each control-
flow pattern. However, it was difficult to find reasoning tasks for
which the knowledge of only one concept was not sufficient to solve
(Compound patterns). Furthermore, in constructing the test material,
we decided to use pairs of activities, which were either close (as a
rough guide approximately one activity between them) or distant
(4one activity between them) according to the spatio-visual distance.
This variation of the location of model elements was mandatory to
achieve reasoning tasks differing in “element interactivity”. Still, it was
difficult to find reasoning tasks with very high element interactivity,
since it was also limited by the size of the models.

We opted for presenting models with textual labels in a verb-
object labeling style (Leopold et al., 2013) in order to research

reasoning on models which are similar to “real” business process
models. However, we acknowledge that using reasoning tasks with
meaningful process element labels instead of abstract labels may
have lead to situations where subjects based their inference on
domain knowledge instead of relying on the process model only.
Also, reasoning problems might arise from problems to understand a
label text. We used models from several domains (as suggested by
Aranda et al. (2007)) as well as different combinations of question
types and process elements with the aim to limit this effect.
Replications of the study (e.g. using abstract labels or using reasoning
tasks which would be answered differently based on domain knowl-
edge than based on a given process model) can help to research the
mediating context effect of textual labels on identifying deductive
conclusions derived from a process model as correct or wrong.

The reader should also bear in mind that based on the
possibility to guess correct answers, percentages of correctly
solved reasoning tasks might be artificially increased, and there-
fore, should not be interpreted in an absolute sense, but only in
relation to values of the same question type. While this problem
cannot completely be eliminated, in order to lower guessing
probability, we had also included the option “I don't know”.

9. Implications for research

The current findings add substantially to our understanding of
the cognitive difficulty of process models. In addition, our article
provides a new understanding of process model comprehension
questions as deductive reasoning tasks.

A lot of empirical work on the understandability of process
models has been undertaken in recent years. A survey of this
research field (Houy et al., 2014) shows that the most frequently
used method for measuring understandability so far has been to
ask questions that aim to test the comprehension of the models.
Interestingly, many of the current studies have not discussed the
selection of questions in detail, which seems to indicate that it is
common practice to “randomly” select comprehension questions.

Melcher et al. (2010) pointed out that results obtained by such an
experimental design should be validated (see also Laue and
Gadatsch, 2011). They further suggested to include questions relating
to different aspects of understanding the relations between activities
in a model (order, concurrency, exclusiveness, and repetition). Our
results strongly support this suggestion by providing empirical
evidence that the selection of the model elements involved and
their interrelations have an influence on the difficulty of a question.
Moreover, our work adds one more perspective: as we have shown,
element interactivity has an influence on understandability and
interactivity should be taken into account when selecting compre-
hension questions. In particular, when asking questions that aim at
measuring the understandability of two models, the models can be
compared in a valid way only if the questions are not too divergent
from one another (from an element interactivity perspective).

If only questions with a small range of element interactivity are
used, the results of such an experiment cannot be generalized when
reasoning about questions for which an element interactivity out of
this range has to be considered. With our suggestions on the
relevance of balanced selection and construction of questions, we
contribute another aspect to existing guidelines for experiments on
the understandability of process models (such as Patig, 2008).
Another implication of our findings is that researchers need to
exercise caution when interpreting existing studies in which the
effect of element interactivity has not been considered when con-
structing comprehension questions. Consequently, replications of
comprehension studies (with a more balanced set of questions) might
shed light on inconsistent results and answer unresolved issues.
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By introducing the concept of local complexity measures, we
hope to open a new strand of research in the field of complexity
metrics for business process models. While the current global
complexity metrics such as those presented in Mendling et al.
(2007b) can only suggest that a model might be difficult to
understand, local metrics could be used to pinpoint the parts of
the model that can cause understanding problems.

Furthermore, our results on differences in understanding the
different control-flow patterns could also be used to adjust para-
meters used in global complexity metrics that build on the differ-
ences in understanding of the various building blocks of a business
process model (as suggested by Lassen and van der Aalst, 2009).

Another remarkable result regarding complexity metrics is that the
workflow patterns related to loops (the arbitrary cycle and structured
loop pattern) seem to bemore difficult to understand than the exclusive
choice pattern. However, all these patterns have in common that the
control flow is built from an XOR-split/XOR-join pair. We conclude that
complexity metrics that just count the number of XOR gateways or the
number of XOR-splits (without asking to which kind of workflow
pattern the gateway belongs to, used for example in Rolon et al. (2009)
and Mendling et al. (2006)), should be questioned. Our results suggest
that measures such as “number of exclusive choices (which are not loop
exits)” would work better than the “number of XOR-splits”.

Several research opportunities emerged from our study.
Further experimental investigations could consider factors such
as model size variations, abstract versus concrete labels and high
practical modeling experience in order to establish an integrative
understanding of determinants of deductive reasoning perfor-
mance. It would be interesting to include comprehension para-
meters as time needed to answer each reasoning task (Houy et al.,
2012) in a computer-based assessment. Additional studies could
validate our results based on a larger number and variety of
deductive reasoning tasks. As fellow scholars have already col-
lected a variety of data sets with answers on process-model
comprehension questions, we suggest re-analyzing these data sets
on item level with the research questions presented in this paper.

10. Practical implications

The presented findings are of direct practical relevance. When
we better understand the influence of cognitive load on the
comprehensibility of a model, it will be possible to manage
cognitive load and – in the end – to obtain models that are more
helpful for communication. This has implications for business
process modeling practice and education and for the potential to
promote acceptance and use of process models in organizations.

Reducing unnecessary cognitive load can help to make the process
model more understandable. Cognitive Load Theory suggests that the
information presented in a model should be structured in a way that
the reader can reduce the cognitive load by assimilating groups of
model elements. Our work provides empirical evidence that high
interactivity of elements may heighten cognitive load and lower
comprehensibility of process models. Thus, we further encourage
model tool designers to provide options for syntax highlighting.
(Reijers et al., 2011) describe a method to use different colors for
identifying split-join pairs belonging together. This provides users with
a visual cue to improve comprehensibility of deeply nested blocks.

To support the modeler, it has been suggested that model editors
calculate (global) complexity metrics and warn the modeler when they
exceed a certain threshold (Sánchez-González et al., 2012). However,
even more useful than reporting the overall complexity is to inform the
modeler which parts of the model are likely to raise comprehension
problems. By introducing the concept of local complexity measures, we
step further into this direction. A model editor could then highlight the
parts of a model that might impose difficulties.

Visualizing the nesting level of software has been found to be a
useful support for computer programmers (Ball and Eick, 1996). It
can serve as a comprehension aid and as an indicator for code
elements that are difficult to understand. For textual documents,
there are tools that measure and visualize complexity and suggest
how the readability can be improved (Newbold and Gillam, 2008).
In a similar way, we think that it could be helpful to highlight the
parts of a process model that increase the interactivity between
the elements in the model.

However, tool support does not have to be restricted to locating
parts of the model that can be difficult to understand. It is also
feasible that the modeling tool suggests replacing this part by a
more comprehensible behavior-equivalent model variant. Patterns
for model modifications that aim to improve the understandability
while preserving the behavior of a model have been described by
La Rosa et al. (2011). The authors of this work discuss that
“automated support to suggest [a complexity reducing pattern]
for increasing the understandability is missing in the current
generation of process model editors.” (La Rosa et al., 2011, p.
627). The concept of local model complexity can spur new
generations of such editors which detect the parts of a model that
can impose understandability problems and suggest
improvements.

Future research is needed to determine valid and reliable
values for the cognitive difficulty of understanding specific rela-
tions model fragments (control-flow patterns as for instance
sequence or loop). These values could finally rate the under-
standability of models without the need for user evaluation.
Looking ahead, exact comprehension values could then be used
to guide modeling tool developers to provide feedback on the
cognitive difficulty of models to users.

Last but not least, the percentage of wrong answers given by
modelers with lower process modeling knowledge to questions related
to the different control-flow patterns allows for conclusions on how to
teach business process modeling. In particular, it seems to be important
to discuss non-trivial models with loops. Also, we recommend providers
of modeling trainings and lecturers to draw their attention to teach
students of the constraints of information processing in humanmemory
and their implications for understanding models.

11. Conclusion

This study is the first experimental analysis of influence factors
on the cognitive difficulty of deductive reasoning tasks on the
basis of a process model. Our work is an extension of existing
literature, which has predominantly looked at global understand-
ability of process models. With reference to the hypotheses posed
at the beginning of this study, we can now state that interactivity
of elements involved in a reasoning task is related to cognitive
difficulty. Another major finding was that the difficulty of control-
flow patterns varies with Loops as well as combinations of at least
two patterns other than Sequence that are more difficult than XOR
and AND. Modelers with lower process modeling knowledge
perform worse on deductive reasoning tasks, and results suggest
that they have specific difficulties with tasks including loops. It
was also shown that it is easier to correctly identify a wrong
conclusion than to verify a correct conclusion drawn on the basis
of a model. Our work, moreover, assists in the understanding of
possible comprehension problems in process models and can
guide modeling tool developers to provide adequate feedback on
the cognitive difficulty of model parts.

From a more general perspective, our research serves as an
initial contribution on human understanding of process logic
concepts (notably parallel execution, loops and decisions), which
can also be classified as fundamental ideas of the computer
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science discipline (Zendler and Spannagel, 2008) and represent a
subset of humans’ “computational thinking” (Wing, 2008). Identi-
fying cognitive difficulties in comprehending processes may ulti-
mately lead to a better understanding of differences in how
humans and computers “think”.

Appendix A. Example of experimental material: model and
characteristics of reasoning tasks

See the Fig. A1 and Table A1.
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Table A1

Item wording Version Reasoning task Control
flow
pattern

Element interactivity Validity of
conclusionProcess

structure tree
distance

Cut
vertex

“At the same point of time” A “Determine required water amount” and “inform the major” can be executed
at the same point of time.

AND 2 No Correct

“At the same point of time” B “Inform news agency” and “phrase press release” can be executed at the
same point of time.

Sequence 1 No Wrong

“In parallel” A “Inform local doctor” and “publish press release” can be executed in parallel. AND 2 No Correct
“In parallel” B “Prepare alternative supply” and “publish press release” can be executed in

parallel.
AND 3 No Correct

“As well as” A In one process instance “buy new equipment” as well as “dig off soil” can be
executed.

XOR 1 No Wrong

“As well as” B In one process instance “clean water pipes” as well as “build in disinfection
system” can be executed.

XOR 2 No Wrong

“Mutually exclusive” A The process steps “build in disinfection system” and “clean water pipes” are
mutually exclusive.

XOR 2 No Correct

“Mutually exclusive” B The process steps “dig off soil” and “buy new equipment” are mutually
exclusive.

XOR 1 No Correct

“More often than” A “Control drinking water quality” can be executed more often than “identify
available hydrants”.

Compound 3 Yes Correct

“More often than” B “Identify available hydrants” can be executed more often than “clean
containers”.

Compound 5 Yes Correct

“Exactly as often as” A In each process instance “clean containers” is executed exactly as often as
“retrieve drinking water samples”.

XOR 3 No Wrong

“Exactly as often as” B In each process instance “organize announcements” is executed exactly as
often as “control drinking water quality”.

Compound 6 Yes Wrong

“Is executed before” A If “inform the police” as well as “inform food supervisory office” are
executed in a process instance, then “inform the police” is executed before
“inform food supervisory office”.

Sequence 1 No Correct

“Is executed before” B If “inform the police“ as well as “give the all-clear” are executed in a process
instance, then “give the all-clear” is executed before “inform the police”.

Sequence 4 Yes Wrong

“Has to be finalized before” A If “prepare information brochure” as well as “organize announcements” are
executed in a process instance, then “organize announcements” has to be
finalized before “prepare information brochure” can start.

Sequence 3 No Wrong

“Has to be finalized before” B If “prepare information brochure” as well as “retrieve drinking water
samples” are executed in a process instance, then “prepare information
brochure” has to be finalized before “retrieve drinking water samples” can
start.

Sequence 3 Yes Correct
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