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Context: A common way to represent product lines is with variability modeling. Yet, there are different 

ways to extract and organize relevant characteristics of variability. Comprehensibility of these models and 

the ease of creating models are important for the efficiency of any variability management approach. 

Objective: The goal of this paper is to investigate the comprehensibility of two common styles to orga- 

nize variability into models – hierarchical and constrained – where the dependencies between choices are 

specified either through the hierarchy of the model or as cross-cutting constraints, respectively. 

Method: We conducted a controlled experiment with a sample of 90 participants who were students with 

prior training in modeling. Each participant was provided with two variability models specified in Com- 

mon Variability Language (CVL) and was asked to answer questions requiring interpretation of provided 

models. The models included 9–20 nodes and 8–19 edges and used the main variability elements. After 

answering the questions, the participants were asked to create a model based on a textual description. 

Results: The results indicate that the hierarchical modeling style was easier to comprehend from a sub- 

jective point of view, but there was also a significant interaction effect with the degree of dependency in 

the models, that influenced objective comprehension. With respect to model creation, we found that the 

use of a constrained modeling style resulted in higher correctness of variability models. 

Conclusions: Prior exposure to modeling style and the degree of dependency among elements in the 

model determine what modeling style a participant chose when creating the model from natural lan- 

guage descriptions. Participants tended to choose a hierarchical style for modeling situations with high 

dependency and a constrained style for situations with low dependency. Furthermore, the degree of de- 

pendency also influences the comprehension of the variability model. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Variability management is essential when dealing with simi-

ar complex systems. We need to manage the variability for sev-

ral different reasons, such as proper test coverage, flexible prod-

ct portfolio, high degree of reuse, and necessary adaptation to a

hanging environment. In order to make the development process

ffective and efficient in these cases, reuse needs to be done sys-

ematically and not ad-hoc. To this end, the similarities as well as

he differences among the systems have to be analyzed and rep-

esented in some comprehensible way for the various stakeholders

nvolved in the development process. 
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Various approaches to variability modeling have been suggested

ver the years. Among those we can mention feature modeling,

rthogonal variability modeling, UML-based variability modeling, 

nd decision modeling. Feature modeling in general [12] and

eature-Oriented Domain Analysis (FODA) [38] in particular pro-

otes representing variability in feature models, which are graphs

r trees that describe end-user visible characteristics (features)

f systems in a product line, illustrating the relationships and

onstraints (dependencies) between them. Orthogonal variability 

odeling suggests specifying variability in separate models, which

re linked to the development artifacts, termed base models.

xamples of languages in this category are Orthogonal Variability

odels (OVM) [53] and Common Variability Language (CVL) [31] .

VL with its aspiration to become a standard for variability mod-

ling could simulate feature models and OVM models, but used

ifferent terms. Features of a feature model would correspond

o choices in CVL. The third category of UML-based variability
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modeling , which includes, for example, PLUS [29] and ADOM [58] ,

extends UML metamodel or introduces profiles with stereotypes

to describe variability-related terms, such as mandatory (kernel),

optional, variation point, and variant. Finally, decision modeling

is based on representation of decisions that “are adequate to

distinguish among the members of an application engineering

product family and to guide adaptation of application engineering

work products” [ 16 , p. 174]. As opposed to feature modeling which

focuses on domain representation, decision modeling emphasizes

product derivation. 

Even after choosing a specific variability modeling language,

different models can be created to represent the same variability

(i.e., set of differences). These models may differ in the character-

istics (choices) they contain or the ways in which these choices are

organized. We examine two common ways to represent variabil-

ity: hierarchical , where the dependencies or constraints between

choices are implicitly specified through the hierarchy of the model,

and constrained , where the dependencies are explicitly specified as

constraints (expressed textually or via visual edges). 1 We use the

term “modeling style” to refer to these two types of variability rep-

resentation. This is in line with the way the term modeling style

is defined and used in other contexts, for instance in a style book

on UML: “a standard would involve using a squared rectangle to

model a class on a class diagram, whereas a style would involve

placing subclasses on diagrams below their superclass(es)” [ 2 , p.

2]. Note that we are not comparing notations but concentrate on

the modeling style. We apply CVL [31] , but we could have used

another notation for variability modeling to fulfill the same objec-

tive. Galster et al. [26] refer to many studies where variability de-

scriptions are applied, but they do not mention any studies where

different styles of representation have been empirically compared

for comprehension. 

To demonstrate differences in style, consider the two models in

Fig. 1 , which specify the variability within basic choices of Skoda

Yeti cars. Both models use CVL notation. The figure labeled (a) fol-

lows a hierarchical modeling style, constraining, for example, active

diesel cars to be manual. Note that this modeling style results in

repetition of choices, but repetition of choices in variability models

is already acknowledged by concepts such as “feature reference”

[18] . The figure labeled (b), on the other hand, specifies the fuel-

, gear-, drive-, and gadget level-related characteristics in separate

branches (although hierarchically in the form of a tree) and the

dependencies between these characteristics are specified as textual

constraints. Thus, we consider it as following the constrained mod-

eling style. 

The selection of the modeling style may influence the compre-

hension of variability and consequently the effectiveness and effi-

ciency of variability management. These aspects are relevant, re-

gardless of whether the variability models are created manually

(by humans) or automatically (by generators or reverse engineer-

ing tools). 

Prior research has investigated how different variability model-

ing notations may affect comprehension. In [56] , the comprehen-

sibility of two orthogonal variability modeling methods – CVL and

OVM – has been evaluated in terms of understanding variability

models and their relations to the development artifacts. In [59] ,

the comprehensibility of a feature-oriented notation (CBFM) and

a UML-based variability modeling method (ADOM) has been com-

pared for different stakeholders (developers and customers/end

users). In [57] the comprehensibility of CVL models to participants

familiar and unfamiliar with feature modeling has been exam-
1 Note, some variability models, such as feature diagrams and CVL models, are 

always structured hierarchically. Hence, by constrained modeling style we refer to 

situations in which dependencies or restrictions are expressed through constraints 

and not through the diagram hierarchy. 
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ned. These studies focus on different modeling notations or rele-

ant stakeholders. They have not addressed the effect of alternative

ays (modeling styles) to represent variability models after a spe-

ific notation and type of stakeholders have been selected. To fill

his gap, our aim is to investigate what the benefits and limitations

f each modeling style are on the comprehension of variability. We

articularly refer to comprehension in both interpreting (reading)

nd creating (writing) models. Czarnecki and Wasowski [19] have

lready mentioned the importance of considering human cognitive

imits for choosing a representation. However, to the best of our

nowledge, no empirical study has been conducted on the afore-

entioned modeling styles in related areas, including software en-

ineering and conceptual modeling. 

Our research can be characterized as intragrammar evaluation

27] , as it compares different ways to apply the grammar (CVL)

nd, in doing so, investigates “principles for improving the use of

ne grammar when used on its own” [ 10 , p. 39]. The main contri-

utions of this paper are to pinpoint when the different styles are

est applied and what the consequences of the different styles are

n comprehension. 

The rest of the paper is organized as follows. Section 2 provides

n overview of the theoretical and technical background relevant

o the research. We outline the research framework and hypothe-

es in Section 3 and then describe in Section 4 the design of the

xperiment we used to test our propositions. Section 5 presents

ur data analysis and the findings of the research. In Section 6 ,

e report and discuss the results, and in Section 7 the implica-

ions for research and practice, as well as the threats to validity,

re presented. Finally, Section 8 summarizes the findings and out-

ines future research directions. 

. Theoretical and technical background 

In this section we provide the theoretical background, elaborat-

ng on representation of things and properties in conceptual mod-

ling ( Section 2.1 ), variability modeling styles and their proper-

ies ( Section 2.2 ), and cognitive effectiveness of variability model-

ng styles ( Section 2.3 ). We further provide the necessary technical

ackground on variability spaces and CVL in Section 2.4 . 

.1. Representation of things and properties 

There is a long tradition of research on how to model things

nd properties. Features, attributes, and properties are central to

ost theories that deal with how humans build classification cate-

ories of concepts. For instance, defining features can uniquely iden-

ify a category as a necessary attribute; characteristic features may

escribe prototypes; or humans may be aware of essential, inci-

ental, and accidental features to build a complex mental theory of

oncepts [68] . 

In the context of domain modeling, researchers have predom-

nantly investigated the effect of alternative representations of

roperties in Entity Relationship (ER) diagrams [8,9,28,49] and

ML diagrams [10,64] on users’ domain understanding. Most

f these works theoretically build on the Bunge–Wand–Weber

BWW) framework [75,76,77] and good decomposition models that

dapt ontological theory to conceptual modeling. 

In contrast to domain modeling, variability modeling has a

tronger focus on “identifying commonality and variability in a do-

ain” rather than “differentiating concepts from features” or “de-

cribing all details of products” [ 44 , p. 65]. Czarnecki et al. [17] cat-

gorize feature modeling as a “notational subset of ontologies” or

s a specific view on ontologies. Asadi et al. [3] suggest a map-

ing of variability concepts to the BWW framework. Specifically,

hey claim that features refer to natural kind, which is “a kind of

hings adhering to the same laws.” Based on this mapping, they
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(a)

Active and Diesel imply Manual
Active and Benzin imply 2-wheel-drive
Adventure implies Diesel and 4x4
Active and 4X4 imply Diesel and Manual

(b)
CVL notation:

Choice (feature) Mandatory

OR relation Optional

XOR relation

1..*

1..1

Fig. 1. CVL models specifying the variability within basic choices of Skoda Yeti cars: (a) hierarchical style and (b) constrained style. 
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urther derive variability patterns and analyze how existing vari-

bility modeling languages support these types of variability. Their

nalysis is intergrammatical, as it mainly focuses on two variabil-

ty modeling languages – feature models and OVM [53] . We, on the

ther hand, concentrate in this work on intra grammatical aspects

n the form of modeling styles. 

.2. Variability modeling styles and their properties 

The extraction and representation of variability models are

he focus of many studies dealing with reverse engineering from
ource code, configurations, or requirements, e.g., [1,65] . Given

he same input, these studies usually generate a single variability

odel [34] , although different models may exist for the same case

19] . As noted in the introduction, these models may differ in the

ays choices are structured. 

Moody [ 48 , p. 766] claims that “to effectively represent complex

ituations, visual notations must provide mechanisms for modular-

zation and hierarchically structuring.” Modularization supports di- 

iding large systems into smaller parts or subsystems in order to

educe complexity. Supported in cognitive load theory, this mech-

nism may “improve speed and accuracy of understanding” and



84 I. Reinhartz-Berger et al. / Information and Software Technology 87 (2017) 81–102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

o  

e  

T  

p  

e  

p  

g  

c  

a  

c  

t  

s  

p  

o  

i  

a  

a  

e  

h

 

a  

o  

2

2

 

d  

e

 

v  

a  

[  

c  

a  

m  

 

i  

i  

“  

t  

w  

g  

h  

c  

i  

c  

p  

d  

d  

h

i

a

 

o  

t  

a  

E  

r  

e  

t

 

o  

b  

a  
“facilitate deep understanding of information content.” Hierarchy ,

on the other hand, supports top down understanding and enables

controlling complexity by organizing elements at different levels of

detail, “with complexity manageable at each level.” From a cogni-

tive point of view, the ‘framework for assessing hierarchy’ by Zu-

gal et al. [78] gives a clear account of possible effects of hierar-

chy in visual models on the mental effort: while ‘abstraction’ de-

creases mental effort due to information hiding and pattern recog-

nition, ‘fragmentation’ increases mental effort, because users have

to switch between fragments and integrate information. 

Many variability models, such as feature diagrams and CVL

models, represent a hierarchical structure to a certain degree.

We are less concerned on whether to use hierarchical structuring

or not, but how to represent variability. Since there are different

ways to model variability, effort has to be put into understanding

the strengths and the weaknesses of different modeling styles. In

the context of this paper, we are not interested in automatically

inferring possible configurations, but on inferring configurations in

the model reader’s mind. As noted, this paper explores two com-

mon modeling styles in the context of variability representation:

hierarchical and constrained. 

Both modeling styles require some kind of classification to orga-

nize the choices in a tree hierarchy. In general, classification serves

two purposes: cognitive economy and support of inferences [51] .

Applied to the variability modeling domain, this means that the

resource reduction effect compared to a list of all possible configu-

rations as well as the easiness with which correct configurations

can be inferred from the model determines the cognitive effec-

tiveness of a variability model. The selection of elements (choices)

for a variability model should therefore balance these two goals

[52] . Parsons and Wand [ 52 , p. 253] refer to two main principles

to reach that goal in class models: completeness (“All relevant in-

formation about each phenomenon (instance) in a domain should

be included”) and efficiency (“Minimize resources used in main-

taining and processing information”). The efficiency principle in-

cludes “non-redundancy” because redundancy “might require ad-

ditional resources in maintenance and retrieval and hence will vi-

olate the principle of cognitive economy” [ 51 , p. 6]. In variability

modeling, redundancy can occur due to repetition of choices to

constrain possible configurations (see, for example, “4 × 4 ′′ in the

model depicted in Fig. 1 (a) and the same element in the graphical

model as well as the three last constraints specified in Fig. 1 (b)). 

Generally, although the repetition of choices is intuitive, it is

not obvious how redundancy should be formally treated. Batory

[5] has explicitly excluded repetitions, but Czarnecki and Kim

[18] enable some kind of repetition by introducing the concept of

“feature reference” to increase reuse and support scalability. Rep-

etition of concepts (nodes) in tree structures has been proven to

be efficient in terms of human comprehension for other purposes

including, e.g., decision trees [61] and logic trees. It has recently

been described that repeating choices represent a language chal-

lenge since the repeated choices obviously represent something

common, while the repetition shows that there are structural dif-

ferences related to the choices [32] . In particular, the challenge be-

comes evident when repeated choices also appear in explicit con-

straints. Since the intuition is quite clear in these cases, our study

does not have to deal with the formal interpretation of repeated

choices. 

In the same vein, Czarnecki and Wasowski [19] refer to two

properties to create models in the area of automatic feature ex-

traction: (1) maximality : “the resulting feature model graphically

exposes maximum logical structure” and (2) minimality : “the re-

sulting feature model avoids redundancy in the representation.” It

is difficult to fulfill both of these criteria, and empirical evidence is

missing on how these criteria affect comprehension of the variabil-

ity models. For instance, Fig. 1 (b), which follows the constrained
odeling style, contributes to the maximality property by addition

f abstract choices “used to structure a feature model that, how-

ver, do not have any impact at implementation level” [ 72 , p. 191].

he choices “Fuel,” “Gear,” “Drive,” and “Gadget Level” are exam-

les of abstract choices in Fig. 1 (b) that increase the number of

lements in the graphical model. The figure also fulfills the decom-

osition principle of minimality, as choices are not repeated in the

raphical model. Classification focus is put on categorizing single

hoices into real-world-classes (e.g., classifying diesel and benzin

s fuel). However, overall, the minimality property is violated be-

ause choices are redundantly mentioned in the textual constraints

o specify the allowed configurations. In the hierarchical modeling

tyle (see Fig. 1 (a)), on the other hand, the decomposition princi-

le of minimality is violated for the benefit of structural overview

f choices, as choices are duplicated in the graphical model to

mplicitly express constraints. The choice “manual,” for example,

ppears three times to constrain active-diesel, active-benzin, and

dventure-diesel cars. Classification focus in the hierarchical mod-

ling style is on representing the local choices at each node in the

ierarchical structure. 

In this context, it is interesting that specifying choices in vari-

bility modeling is not only based on logical structuring, but also

n taking “additional ordering and grouping information” [ 19 , p.

7] into account. 

.3. Cognitive effectiveness of variability modeling styles 

We can now turn to a discussion on possible cognitive effects of

ifferent modeling styles as the hierarchical vs. constrained mod-

ling styles. 

From a cognitive point of view, working memory is the rele-

ant brain system involved in inferring correct configurations from

 model [4] , and it is a limited resource. The cognitive load theory

69] describes how the design of information presentation affects

ognitive load in working memory. Maximum capacity should be

vailable for germane cognitive load – the processing of the infor-

ation and the construction of schemas based on the information.

Intrinsic cognitive load is concerned with “the natural complex-

ty of information that must be understood.” [ 70 , p. 124]. Complex-

ty is primarily influenced by high element interactivity, namely,

elements that heavily interact and so cannot be learned in isola-

ion” [ 70 , p. 124]. To compare intrinsic cognitive load in our study,

e define a dependence index, which aims to measure the de-

ree of interaction between elements in a variability model: the

igher the dependence index is, the higher the interaction between

hoices is (“choice interdependency”). The dependence index is not

nfluenced by the modeling style and can be calculated for a spe-

ific problem domain that is characterized by the choices and de-

endencies to be modeled. The exact way to calculate the depen-

ence index is described in Section 4 , and noteworthy is that the

ependence index of the situation modeled in Fig. 1 is relatively

igh irrespectively of the chosen modeling style, as “gadget level”

mplies constraints on “fuel” and “drive”, whereas “gadget level”

nd “fuel” imply constraints on “gear” and “drive”, and so on. 

While it is not possible to change intrinsic cognitive load with-

ut changing the choices and their dependencies, the presenta-

ion of the variability models – e.g., the modeling style – can be

ltered, which might impose additional extraneous cognitive load.

xtraneous cognitive load is influenced by the way information is

epresented [40] . In the context of our study, two cognitive load

ffects [70] dependent on extraneous cognitive load are relevant:

he split-attention effect and the element-interactivity effect. 

The split-attention effect [11] occurs when users have to not

nly split their attention between different sources of information

ut also to mentally integrate this information based on search-

nd-match processes, e.g., when text and diagrams are arranged
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patially separated instead of in an integrated presentation [37,46] .

uch a split-attention effect might occur in the case of combining

 model with textual constraints, as is the case in the constrained

odeling style shown in Fig. 1 (b). As textual constraints often

elate to more than one element in the model, there are no

ppropriate means to directly position them in the model. 

Regarding element-interactivity effect, Sweller [ 70 , p. 134] states

hat if “element interactivity due to intrinsic cognitive load is high,

educing the element interactivity due to extraneous cognitive load

ay be critical.” We argue that if an element is repeated in a

odel, then the user is confronted with higher element interac-

ivity, as more relations of the element to other elements have

o be considered. The element-interactivity effect gives a clearer

ccount of how to explain possible effects of different modeling

tyles than does the non-redundancy criteria of Czarnecki and Wa-

owski [19] and Parsons and Wand [52] because a repeated use of

n element in a model may also serve for the correct model defi-

ition and does not represent redundancy of information. In these

ases, repetition should not be considered ‘unnecessary informa-

ion’ that could be eliminated. Repeating elements in a model also

eightens the amount of model elements per se and will therefore

eighten cognitive load, as users need to pay attention to a higher

umber of elements at the same time [40] . 

.4. Variability spaces and CVL 

Two variability spaces are commonly distinguished in the liter-

ture: problem space and solution space. The problem space deals

ith user goals and objectives, required quality attributes, and

roduct usage contexts, whereas the solution space focuses on later

evelopment stages and refers to the functional dimension (i.e.,

apabilities and services), the operating environmental dimension

e.g., operating systems and platform software), and the design

imension (e.g., domain technologies) [39] . Traceability between

hose spaces is discussed in [6] , where a conceptual variability

odel that allows a 1-to-1 mapping of variability between the

roblem space and the solution space is defined. 

Referring to both problem and solution spaces, CVL facilitates

he specification and resolution of variability over any base model

efined by a metamodel. Its architecture consists of variability ab-

traction and variability realization. Variability abstraction supports

odeling and resolving variability without referring to the exact

ature of the variability with respect to the base model (the prob-

em space). Variability realization , on the other hand, supports mod-

fying the base model during the process of transforming the base

odel into a product model (the solution space). 

In this study we concentrate on the variability abstraction part

f CVL, which corresponds closely to feature models. The main ex-

mined concepts in our study are choices, their relationships, and

onstraints. Choices are technically similar to features in feature

odeling. CVL offers more concepts for variability modeling, but

ur study does not apply them. Choice children are related to their

arents higher in the tree in two different ways: (1) Mandatory or

ptional : the positive resolution of a child may be determined by

he resolution of the parent (mandatory) or can be independently

etermined (optional). (2) Group multiplicity : a range is given to

pecify how many total positive resolutions must be found among

he children: XOR/alternative – exactly one, OR – at least one. 

Constraints express dependencies between choices of the vari-

bility model that go beyond what is captured by the tree struc-

ure. Two kinds of constraints are applied in our study: (1) A im-

lies B – if A is selected, then B should be selected too (this con-

traint is known as “requires” in feature modeling), and (2) Not (A

nd B) – if A is selected, then B should not be selected and vice

ersa (this constraint is known as “excludes” in feature modeling). 
. Research model and hypotheses 

Our goal is to examine whether the way variability models

n general and CVL models in particular are organized influences

omprehensibility and how. To this end, we refer to the two afore-

entioned modeling styles: hierarchical , in which most constraints

re encoded in the tree hierarchy of the model, and constrained ,

hich promotes a repetition-free visual classification tree, while

ross dependencies are specified by textual constraints to restrict

he possible set of configurations. We examine the ease of in-

erpreting (reading) and creating (writing) the models mainly in

erms of errors done and time to complete the task, but also by

ubjective means. 

We summarize our expectations about the effect of modeling

tyles in two research frameworks: one for model interpretation

 Fig. 2 ) and one for model creation ( Fig. 3 ). In addition to the mod-

ling style, we refer to the choice interdependency through the de-

endence index. As noted, this index measures the degree of in-

eraction between choices in a model and is independent of the

odeling style. 

The first research framework proposes that CVL model compre-

ension is a function of the modeling style (extraneous cognitive

oad) and the choice interdependency (intrinsic cognitive load) –

he dependency (or independency) between the involved elements.

ighly dependent choices cannot be understood in isolation, and

eaders have to take all their relations with other choices into ac-

ount. The first research framework further specifies that compre-

ension is measured both objectively (using the total score of cor-

ect answers and the time to complete the task) and subjectively

using users’ scores for difficulty and ease of use). 

In light of the theoretical considerations explained above, we

ill draw several propositions to investigate the effects of using

ifferent modeling styles on model readers’ ability to comprehend

he CVL model. Specifically, we build on cognitive load theory to

xplain possible effects of modeling style. We expect similar effects

n objective as well as subjective model comprehension measure-

ents and therefore the hypotheses are formulated for both. 

As outlined above, separating textual constraints from the

raphical model in the constrained modeling style might re-

ult in a split-attention effect for users. The split-attention ef-

ect heightens cognitive load and therefore, comprehension perfor-

ance is expected to be lowered. However, the hierarchical model-

ng style may also lead to increases in cognitive load based on the

lement-interactivity effect because it might be necessary to inte-

rate information from different occurrences of one and the same

hoice. Based on theory, we cannot determine which effect will be

tronger. Thus, we want to investigate the hypothesis that: 

H1. The modeling style influences comprehension of variability

models. 

Second, we want to discuss in which cases the split-attention

ffect caused by the constrained modeling style might be weaker

han the element-interactivity effect of the hierarchical modeling

tyle and vice versa. We argue that different levels of choice inter-

ependency suit different modeling styles because depending on

he situation, one cognitive load effect may be stronger than an-

ther. While the negative impact of high dependency on compre-

ension is obvious, we are interested in examining the interaction

f the choice interdependency and the modeling style. Using the

onstrained modeling style for high dependency, for instance, can

esult in a high number of textual constraints (e.g., Fig. 1 (b)) and

hus in a higher number of repetitions leading to higher element

nteractivity. Such a case might be presented more efficiently with

 hierarchical modeling style (see Fig. 1 (a)) with a lower number of

epetitions. For low dependency, it may be the other way around.

herefore, we propose: 
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Research Framework for Model Interpretation

Model Comprehension

T: Objective Model Comprehension
O:
- Comprehension Effectiveness (Total Score)
- Comprehension Efficiency (Time)

Key:
T – Theoretical Factor
O – Operationalization of Factor

H2

T: Subjective Model Comprehension
O:
- Subjective Difficulty of Model
- Perceived Ease of Use of Model

T: Modeling style
O:
- Hierarchical
- Constrained

T: Choice Interdependency
O:
- Low Dependency
- High Dependency

H1

Fig. 2. Research framework for model interpretation. 

Fig. 3. Research framework for model creation. 
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H2. There is an interaction effect between the choice interdepen-

dency (as specified by the dependence index) and the modeling

style, influencing model comprehension. 

For discussing the expected effects of modeling style on model

creation, we developed the research framework depicted in Fig. 3 .

This framework suggests that the choice interdependency (as spec-

ified by the dependence index) and prior exposure to a modeling

style will influence the selection of the modeling style when creat-

ing models. The choice of a modeling style and the choice interde-

pendency will result in differences in performance. Performance is

measured in terms of effectiveness (i.e., correctness of choices, de-

pendencies, and overall) and subjective difficulty reported by the

users (on every requirement). 

We first turn to the effect of prior exposure to modeling styles

on selecting a modeling style for model creation. Use of examples

prior to a design task can lead to a “functional fixation.” Func-

tional fixation is a cognitive bias to use an object the way it is

normally used. Duncker defines functional fixedness as a "mental

block against using an object in a new way that is required to solve

a problem" [20] (e.g., using a hammer for pounding nails). Jansson

and Smith [36] found that designers also tend to conform to exam-

ples provided to them in a conceptual design task. In light of these
esults, we hypothesize that modelers will also adhere to the mod-

ling style exposed to previously: 

H3. Prior exposure to a modeling style in examples leads to a

higher subsequent use of this modeling style. 

Second, we expect the choice interdependency to influence the

election of the modeling style. Modelers perceive that variability

roblems are of different kinds and this materializes through how

onstrained or hierarchical they make the description. For instance,

f dependence is high (a high value on dependence index), it might

e possible to model the case with a hierarchical modeling style

sing XOR relations similar to a decision tree structure, in which

ach path from the root to the leaf represents a valid choice con-

guration (see, e.g., Fig. 1 (a)). In contrast, the constrained model-

ng style would need a variety of crosscutting constraints to rep-

esent the case correctly. On the other hand, for low dependency,

t might be best to use various OR relations and only a few cross-

utting constraints. Such a case is easier to define in a constrained

odeling style – giving the whole combination possibilities first

nd then excluding single combinations. In this case, it might seem

ore difficult for participants to define all needed combinations to

over the whole configuration space in a hierarchical way. Thus,

e hypothesize: 
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2 Mandatory choices appear in all valid configurations and hence should not have 

a contribution to dependency calculation. Dead choices do not appear in any con- 

figuration and are thus redundant in the specification. As such, they should not be 

taken into consideration in the calculation of the dependence index. 
3 The normalized sum is achieved by dividing the sum by the maximal potential 

one, i.e., 4 × n × ( n −1)/2. 
4 It is obvious that no pair of choices can give 0 combinations, since every con- 

figuration will give one pair of truth values. If the number of truth values is 1, then 

this means that the two choices in question are constant over the set of config- 

urations, but such situations – mandatory choices – have been eliminated by our 

process. 
H4. The choice interdependency (as specified by the dependence

index) influences the choice of modeling style. 

Finally, we advance a hypothesis on how chosen modeling style

ight affect performance. We argue that the choice interdepen-

ency may call for a specific modeling style, and that applying the

ppropriate style implies higher performance (namely, higher qual-

ty of the created models and lower subjective difficulty). Accord-

ngly: 

H5. There is an interaction effect between the choice interdepen-

dency (as specified by the dependence index) and the modeling

style, influencing the quality of the created models and the per-

ceived difficulty. 

. Experimental design and procedure 

.1. Experimental design 

To test our hypotheses, we used a between-groups design with

ne main factor (modeling style) with two levels (constrained vs.

ierarchical). In each experimental group, participants were shown

wo models describing the variability within different sets of Skoda

eti choices (basic choices as depicted in Fig. 1 and extra choices

in Appendix A ), both modeled either in the constrained or in

he hierarchical style. As explained later, the basic and the extra

odels differ in terms of dependency between choices. The partic-

pants were asked first to answer comprehension questions about

hese two models without using any supporting tool. We varied

he order of the two models to control for possible learning ef-

ects. Next, the participants had to create a CVL model (using a

edicated CVL tool, as explained later) themselves based on a short

atural language description of the choices in the top-of-the-range

koda Yeti edition without being guided regarding the modeling

tyle. 

.2. Materials and measurement of variables 

We used an online questionnaire with four parts: pre-

uestionnaire, studying, comprehension part, and modeling part.

e next elaborate on each part. 

.2.1. Pre-questionnaire 

The purpose of the pre-questionnaire was to obtain general in-

ormation about the participants and their background, including

ge, gender, degree and subject of studies, and familiarity with

eature modeling (this was the only variability modeling approach

he participants could be exposed to). The familiarity of partici-

ants with variability modeling is important, as experts develop

schemas’ – language-independent, abstract problem representa- 

ions – in their mind, e.g., for programing [60] or modeling con-

tructs [25] . They therefore have more working memory resources

vailable for comprehending the model. To measure (self-rated) fa-

iliarity with feature modeling, we adopted the three-item mod-

ling grammar familiarity scale of Recker [54] with a 7-point Lik-

rt scale (from strongly disagree to strongly agree): (1) overall, I

m very familiar with feature diagrams, (2) I feel very confident in

nderstanding feature diagrams, and (3) I feel very competent in

odeling feature diagrams. 

.2.2. Studying 

After filling in the pre-questionnaire, the participants were pre-

ented with slides explaining and exemplifying the relevant parts

f CVL. The participants were also given hard-copies of these

lides, which they could consult while answering the questions.
he participants had to study CVL on their own from the slides

nd proceed to the main questionnaire. 

.2.3. Comprehension part 

.2.3.1. The models. In the comprehension part, each participant

eceived two CVL models following the same modeling style de-

cribing different sets of choices of Skoda Yeti cars and their

ariability. One model describes basic choices, such as fuel and

rive (see Fig. 1 ), and the other describes extra choices, such as

anorama roof and parking heater (see Fig. 5 in Appendix A ). Al-

hough the numbers of choices in those models are quite simi-

ar, the choice interdependency differs. To calculate the degree of

ependency in each modeling situation, we calculate dependence

ndices as follows. For each pair of distinct non-abstract choices

apart from mandatory and dead choices 2 ), we count the number

f combinations allowed in all valid configurations generated from

he given model. The maximal number is 4 – ∅ , {A}, {B}, {A, B}

to represent no selection of the two choices, the selection of A,

he selection of B, and the selection of both A and B, respectively.

ny dependency reduces one or more combinations. The depen-

ence index is then calculated as 1 minus the normalized sum of

he above numbers for all pairs (where each pair is considered

nce, irrespective of the order of choices). 3 Dependence index of

 means that all choices are independent of each other, i.e., all the

our combinations are feasible for each pair of choices. The upper

ound of the dependence index is .5 since our process will never

esult in less than two combinations for each pair of choices. 4 The

loser the dependence index is to 0, the less dependency between

hoices exists. Note that the dependence index is not influenced

y the modeling style, as superfluous choices, e.g., resulting from

lassification, are not included in the calculation. The dependence

ndex of the models in Fig. 1 (“basic”) is .19 (see Appendix B for the

alculation details), indicating relatively high dependency between

hoices. The dependence index of the models in Fig. 5 in Appendix

 (“extra”), on the other hand, is clearly lower – .05 – indicating

ow choice dependency. 

Overall, we had two experimental groups: one in which the two

odels were specified following the hierarchical modeling style

nd the other in which the two models were specified following

he constrained modeling style. However, we had four question-

aire variants (as indicated in Table 1 ) because we also varied the

rder of the two models in each of the two experimental groups

o control for possible learning effects. 

The CVL models for the experiment were built by Haugen, one

f the creators of CVL who is familiar with the possible Skoda Yeti

onfigurations from the Norwegian Skoda public web pages. All au-

hors checked that the versions of the same model (“basic,” “ex-

ra”) fulfill the requirement of informational equivalence, meaning

hat “all information in one [representation] is also inferable from

he other and vice versa” [ 43 , p. 67]. In the context of variabil-

ty modeling, each pair of models can be described as “equivalent”

ecause their configuration space is equal, namely, “the set of all

nstance descriptions derivable from the first diagram is equal to

he set of instance descriptions derivable from the other diagram”

 15 , p. 86]. 
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Table 1 

Questionnaire variants. 

Experimental group Variant number First model Second model 

A 1 Basic, hierarchical Extra, hierarchical 

2 Extra, hierarchical Basic, hierarchical 

B 3 Basic, constrained Extra, constrained 

4 Extra, constrained Basic, constrained 
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4.2.3.2. Comprehension tasks. For both experimental groups, ten

questions were asked about each model (“basic,” “extra”), examin-

ing whether specific configurations of Skoda Yeti cars are allowed

(see Appendix C for the full list of questions). These questions can

be described as surface-level tasks (measuring comprehension of

models more directly than do deep-level tasks), which require par-

ticipants to work with the models in a usage context [50] . More-

over, as CVL models aim at representing variability, comprehending

which configurations are valid and which are not is the main task

for investigation. 

The participants were presented with the model, one question

at a time. They had to choose between the following answers:

correct , wrong , cannot be answered from model, I do not know . Af-

ter answering a question, participants proceeded to the next ques-

tion, but could not return to previous questions. No rigid time con-

straints were imposed on the participants. 

As noted in Section 3 , we measured the cognitive effect of the

modeling styles on comprehension using two objective measures:

comprehension effectiveness – operationalized with correctly an-

swered questions on model content – and comprehension effi-

ciency – time needed to answer the set of questions regarding the

model content. Such measures of effectiveness and efficiency are

widely used in investigating comprehension of conceptual models

[33] . 

4.2.3.3. Post comprehension questionnaire. The participants had to

fill a post-part questionnaire that collected subjective ratings of

the comprehension of each model. In particular, we measured per-

ceived ease of use of the model with a slightly adapted version

of the 4-item scale of [45] . An example item was “Learning how

to read the model was easy.” We further measured the difficulty

in understanding different model constructs relevant to variabil-

ity modeling (mandatory and optional elements, XOR and OR re-

lations), with the answering options ranging from 1 = very easy

to 7 = very difficult. In addition, the participants could report on

difficulties they experienced in open text fields. 

4.2.4. Modeling part 

After completing the comprehension task, the participants were

given a short tutorial of a CVL tool including operations such as

adding choices, setting groups, and defining constraints. The tool

was an early stand-alone version of what has now become the

BVR Tool. 5 The participants would get immediate help if they had

tool problems, but this was extremely rare as the tool itself was

easy to grasp for our modeling task. In addition, they got a short

textual description (two paragraphs) of a top-of-the-range edi-

tion of Skoda, called Laurin and Klement. The modeling task fo-

cused on this top-of-the-range edition and on its diesel cars (see

Appendix D ). The choices were quite obvious within the descrip-

tion, so that we will be able to concentrate on the organization of

the choices into diagrams (in the form of modeling styles) rather

than on their extraction from the text. Although often variability

models are automatically created from software development arti-

facts (for example, from requirements [35] ), the aim of this task
5 http://modelbased.net/tools/bvr-tool/ . 

W  

b  

c

as to check the difficulties humans face when specifying variabil-

ty models, e.g., in scenarios of modifying automatically-generated

odels due to changes in the variability requirements. 

The participants were given hard copies of the tutorial and the

escription, and they were free to consult the hard copies when

reating the model. The only requirement was to apply the given

ool in order to prevent syntax errors. The constraints could be

iven either as a parsed text in the tool or as a free text separate

rom the tool. We ignored “simple” syntax errors when analyzing

he constraints. 

Similar to the comprehension part, the modeling task also re-

erred to basic and extra choices, although in a slightly different

ay from those of the comprehension part. The dependence index

f the “basic” model was higher than that of its counterpart in the

extra” model (.3 and .04, respectively). 

After completing the modeling task, the participants were asked

o rate the difficulty of each requirement they were requested to

odel. The rates ranged from 1-very easy to 7-very difficult. 

We measured the quality of model creation in terms of correct-

ess, as well as the reported difficulty to do that. As the partici-

ants were free to choose any modeling style, we observed mixed

odeling styles, in addition to the pure ones – constrained and hi-

rarchical. The way we chose to handle these cases is elaborated

pon later. 

.3. Sample 

Participants were recruited from four different classes (in three

ifferent countries) from information systems, informatics, and

usiness curricula with prior training in modeling. In each class,

he participants were arbitrarily divided into the four combinations

f experimental groups and experimental orders (see Table 1 ). To

ssure sufficient motivation during the experiment, participants re-

eived approximately 5% course credit for this task, but they could

ecide not to participate in the experiment at all, as this credit

as either defined as a bonus or could be substituted by another

ask, depending on the class. Nevertheless, most students chose to

articipate in the experiment. 

We performed a power analysis using the G 

∗Power 3 software

22] to approximate sample size requirements for a subsequent

NCOVA (analysis of covariance) with one covariate across two

roups (modeling style) and expecting medium effect sizes of f ( U )

 .30 with type-1 error probability of α 〈 .05. A sample size of

 = 90 was required to reach sufficient statistical power ( 〉 .80). 

A total of 92 students participated in the study, thus fulfilling

he sample size criterion. Examining their background, we found

hat the number of models previously created or read was nega-

ively skewed – there were a few very experienced modelers and

ostly plain novices. We decided to exclude univariate outliers

ased on the criterion “standardized scores in excess of 3.29 ′′ [ 71 ,

. 73]. Therefore, two participants (who had created or read over

00 models) were excluded, reducing the sample size to 90 (43

nd 47 participants per experimental group, respectively). Table 2

ives relevant demographic statistics for both experimental groups.

e performed t -tests and X ² tests to screen for possible differences

etween the experimental groups. Results did not suggest signifi-

ant differences between groups. 

http://modelbased.net/tools/bvr-tool/
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Table 2 

Participants’ demographic data (M = mean, SD = standard deviation). 

Hierarchical ( n = 43) Constrained ( n = 47) Total ( N = 90) Statistical test 

M/count SD/percentage M/count SD/percentage M/count SD/percentage 

Age 25 .42 3.16 25 .31 4.38 T df = 86 = 0.13; 

n.s. 

Gender 

Female 18 42% 20 43% 38 42% X ²df = 1 = 0.004; 

n.s. 

Male 25 58% 27 57% 52 58% 

Amount of models created or read 31 .61 36.86 25 .64 35.43 T df = 88 = 0.78; 

n.s. 

Work experience as programer 

Yes 7 16% 12 25% 19 21% X ²df = 1 = 1.15; 

n.s. 

No 36 84% 35 75% 71 79% 

Familiarity with software product line 

engineering 

Yes 17 40% 14 30% 31 34% X ²df = 3 = 0.95; 

n.s. 

No 26 60% 33 70% 59 66% 

Familiarity with feature modeling (3 items, 

mean value, 7-point scale, from 1 = strongly 

disagree, 7 = strongly agree) 

2 .67 2.22 2 .45 1.79 2 .55 2.00 T df = 80.78 = 

0.51; n.s 
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We further analyzed for differences between the courses where

ur study took place. As those analyses are not related to the main

esearch questions, we present the results in Appendix E . 

. Results 

Data analysis was carried out with SPSS 20.0. We elaborate next

ow data were analyzed and then detail the results. 

.1. Model comprehension 

.1.1. Data screening 

To test our first research framework, including hypotheses 1

nd 2, we ran four repeated measure analyses of covariance (AN-

OVAs) with experimental group (constrained vs . hierarchical) and

xperimental order (first or second task) as between-subject vari-

bles. The dependent variables in the four separate ANCOVAs were

omprehension effectiveness (correctness), comprehension efficiency 

time), subjective difficulty of model, and perceived ease of use . Each

ependent variable was measured twice (for each of the two mod-

ls: high choice interdependency ( basic) and low choice interde-

endency ( extra) ), thus constituting a within-subjects factor. Famil-

arity with feature modeling was used as model covariate (a con-

rolled variable). 

In a first step, we checked whether assumptions for perform-

ng ANCOVAs for repeated measures were met based on the pro-

edures proposed in [71] . Shapiro–Wilk tests of the dependent

ariables indicated that the assumption of normality of dependent

ariables had been violated. However, ANCOVAS’ robustness is ex-

ected with at least 25 participants per experimental condition

63] and we had over 40 participants per experimental group. 

We sought univariate outliers within each experimental group

ecause they might distort statistical analyses [ 71 , p. 72]. Concern-

ng the model with high choice interdependency – basic – we had

o exclude two univariate outliers in the analyses. Based on the

riterion “standardized scores in excess of 3.29 ′′ [ 1 , p. 73], we ex-

luded two cases for all four analyses (one out of each experimen-

al group) because these participants had used a high amount of

ime for solving questions on the basic model (906 and 812 s). It is

ossible that these subjects were distracted during the experiment.

Box’s M tests for homogeneity of variance-covariance matri-

es indicated potential problems with homogeneity of variance for

ll four analyses. Therefore, we assessed homogeneity of variance
ith F max (ratio of largest to smallest cell variance) [ 71 , p. 86].

ince our sample sizes were relatively equal and F max was lower

han 5 in the analyses, we deem this assumption to be met. 

.1.2. Tests of hypotheses 

Table 3 and Fig. 4 give an overview of the results of the AN-

OVAs for repeated measures. Overall, there was a significant ef-

ect of the experimental group (constrained vs. hierarchical) on all

ependent variables. The modeling style did influence comprehen-

ion effectiveness, lending support to H1. The hierarchical model-

ng style was easier to comprehend. However, there is also a sig-

ificant disordinal (crossover) interaction effect of choice interde-

endency and modeling style, indicating that the effect of mod-

ling style differs for the “basic” and “extra” models. This means

hat the type of effect the modeling style has depends on the

hoice interdependency of the models, thus supporting H2 predict-

ng an interaction effect. Therefore, the main effect of modeling

tyle cannot be interpreted without taking the choice interdepen-

ency into account. While participants achieved a higher compre-

ension of the model with high dependency in the hierarchical test

ondition ( F (1,83) = 25.07, p < .001), they significantly understood

he model with low dependency better in the constrained style

 F (1,83) = 4.26, p = .04). Similarly, participants took less time for

nswering questions for the hierarchical model with high depen-

ency ( F (1,83) = 23.69, p < = .001) than for the constrained model

ith high dependency, and took less time for answering questions

or the constrained model with low dependency ( F (1,85) = 8.34,

 = .005) than for the hierarchical model with the low dependency.

hese results provide evidence to accept H2 in terms of objective

omprehension. 

Next, we discuss results of the subjective model comprehen-

ion. Participants rated the ease of use of the hierarchical model

igher than that of the constrained model. Additionally, they rated

he subjective difficulty of the hierarchical model lower for both

odels. These results support H1 concerning the effect of model-

ng style on subjective comprehension of CVL models. While there

as an interaction effect of choice interdependency and modeling

tyle for perceived ease of use, there was no interaction effect for

he subjective difficulty of the model, and thus the subjective data

id not provide clear support for H2. Concerning ease of use, par-

icipants perceived hierarchical models easier to use in both mod-

ls, where in the model with high dependency – basic – the dif-

erences were even larger with respect to the constrained model. 
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Table 3 

An overview of the results of the ANCOVAs for repeated measures. 

Effect F ( df Hypothesis = 84; df Error = 1) Significance Partial eta squared 

Comprehension effectiveness (total score) Modeling style 4 .21 .04 .05 

Choice interdependency n.s. 

Choice interdependency ∗ modeling style 36 .51 < .001 .30 

Experimental order n.s. 

Familiarity with feature modeling 7 .50 .01 .08 

Choice interdependency ∗ experimental order 4 .57 .04 .05 

Choice interdependency ∗ familiarity with feature modeling n.s. 

Comprehension efficiency (time) Modeling style n.s. 

Choice interdependency 6 .64 .01 .07 

Choice interdependency ∗ modeling style 43 .81 < .001 .34 

Experimental order n.s. 

Familiarity with feature modeling 12 .08 .001 .13 

Choice interdependency ∗ experimental order 34 .17 < .001 .29 

Choice interdependency ∗ familiarity with feature modeling n.s. 

Perceived ease of use Modeling style 24 .80 < .001 .23 

Choice interdependency n.s. 

Choice interdependency ∗ modeling style 9 .21 .003 .10 

Experimental order n.s. 

Familiarity with feature modeling 4 .92 .03 .06 

Choice interdependency ∗ experimental order n.s. 

Choice interdependency ∗ familiarity with feature modeling n.s. 

Subjective difficulty of model Modeling style 4 .14 .05 .05 

Choice interdependency n.s. 

Choice interdependency ∗ modeling style n.s. 

Experimental order n.s. 

Familiarity with feature modeling 17 .07 < .001 .17 

Choice interdependency ∗ experimental order n.s. 

Choice interdependency ∗ familiarity with feature modeling n.s. 
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Fig. 4. Results for model comprehension: (a) comprehension effectiveness (total score), (b) comprehension efficiency (time), (c) perceived ease of use, and (d) subjective 

difficulty of model. 
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Table 4 

Examples of decomposing requirements into examined elements. 

Requirement Examined element Element type 

When it is automatic, only the 4 × 4 drive and a 140 hp engine are possible. 4 × 4 Choice 

140 hp Choice 

Automatic - > (4 × 4 and 140 hp) Dependency 

Choosing the parking assistant excludes choosing the backing sensor. Parking assistant Choice 

Backing sensor Choice 

Parking assistant - > not (backing sensor) Dependency 
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6 Ref: http://wilderdom.com/301/Cohensd.xls , last retrieved 20/04/2016. 
As for the controlled variables, the experimental order did not

nfluence comprehension directly. However, there were significant

nteraction effects between the choice interdependency and the

xperimental order for comprehension effectiveness (total score)

nd efficiency (time). While comprehension scores in the basic

odel did not depend on the order, the extra model was bet-

er understood when being second than when being first. Partici-

ants did answer more questions (83% vs. 77%) on the extra model

orrectly in cases where they had previously worked on the ba-

ic model. They did use more time on the first (basic = 328.72;

xtra = 409.09 s), compared to the second model (basic = 235.50;

xtra = 313.67 s) on which they were answering questions, regard-

ess of which model was first – basic or extra. There was no effect

f experimental order on perceived ease of use nor on subjective

ifficulty of model. 

Familiarity with feature modeling did have an effect on all de-

endent variables, which is in line with prior studies on compre-

ending variability models by novices and experts [57] . Partici-

ants with higher familiarity performed better on the comprehen-

ion tasks, but they also took more time to solve them. They rated

he perceived ease of use of the model higher and the difficulty

o understand different model elements as lower, with respect to

articipants with lower familiarity. 

.2. Model construction 

.2.1. Data screening and coding 

The number of different models created for the given natural

anguage description was quite large. Therefore, two of the authors

f this paper encoded the created models independently. Two

odels belonging to the hierarchical modeling group were missing

ecause the participants failed to upload the correct files for their

olution. Overall, 88 models were analyzed. For each model, the

pecification of each requirement (a sentence or a part of a sen-

ence in the textual description) was separately encoded. Moreover,

ach requirement was decomposed into choices and dependencies

mong them. Table 4 provides some examples of this decomposi-

ion. 

The specification of each element (choice or dependency) could

e completely correct, partially correct, incorrect, or missing (i.e.,

o evidence that the participant noticed the requirements for the

lement). We assigned 1 point for each correct answer and .5

oints for a partially correct answer. At this stage, we have not dif-

erentiated between missing and incorrect specifications. The en-

oders further examined the dependencies among choices as cross-

ut (textual) constraints or hierarchical dependencies (including

R, XOR, optional, and mandatory relations); accordingly, the rep-

esentation type could be text or model, respectively. The typical

ase was that a single dependency was specified either as a sin-

le textual constraint or in the model. There were a few cases

n which a constraint was modeled as part of another constraint

three cases) or as two distinct textual constraints (three cases).

hese six cases were also treated as ‘text’ during the entire proce-

ure. 
The encoders further classified the modeling styles used to

pecify the basic and extra choices of Laurin and Klement cars (hi-

rarchical vs. constrained). 

After independently encoding all models, the encoders dis-

ussed the differences in their coding until they reached full agree-

ent. 

.2.2. Tests of hypotheses 

First, we turn to the effect of prior exposure on choice of mod-

ling styles (our third hypothesis – H3). To compare experimental

roups, we used chi square tests (see Table 5 for descriptive re-

ults and all test values). From the data in Table 5 , it is apparent

hat there is a significant influence of prior exposure to modeling

tyle on the style chosen, both for the basic model ( X ²df = 1 = 33.76;

 < .001 ) and the extra model ( X ²df = 1 = 22.57; p < .001 ), the effects

f which can be considered large (Phi ϕ = .62 and .51, respectively).

n 76% of the cases, the participants stuck to the modeling styles

o which they were exposed. If beforehand confronted with con-

trained models in the first part of the experiment (the compre-

ension task), participants used a constrained modeling style more

ften than using a hierarchical style (83% vs. 17%, overall). When

onfronted with a hierarchical style, participants stuck to the hier-

rchical style in 68% of the cases, while in 32% of the cases they

witched the modeling style to a constrained style. Overall, the re-

ults lend support to hypothesis H3, that prior exposure affects

hoice of modeling style. 

From Table 5 we can derive that it depends on the choice in-

erdependency whether hierarchical or constrained modeling styles

re chosen: more (60%) participants chose to model the high de-

endency model in a hierarchical style than they did in a con-

trained style (40%) and vice versa for the low dependency model

22% hierarchical style vs. 78% constrained style). Thus, the re-

ults support H4, that choice interdependency may further influ-

nce whether users choose a specific modeling style (see Table 6 ). 

Next, we turn to the effects of the chosen modeling style and

he choice interdependency on the resulting model (our fifth hy-

othesis – H5). To this end, we calculated t -tests for indepen-

ent samples for the basic model and for the extra model. Co-

en’s d was calculated in a separate tool 6 to determine effect sizes

or significant effects. Results show a positive overall influence

f the constrained modeling style on modeling correctness, both

or the model with high choice dependency (Constrained: M = .89,

D = .17; Hierarchical: M = .82, SD = .16; t df =86 = −1.82, p = .07) and

he model with low choice dependency (Constrained: M = .89,

D = .09; Hierarchical: M = .80, SD = .17; t df =21 = −2.26, p = .04).

hen looking at a detailed level, we note that the constrained

odeling style had only a positive influence on choices in the

odel with low choice dependency, but not in the model with

igh choice dependency. The absence of a measurable effect for

hoices in the high dependency model might be due to the fact

hat most choices in this situation were involved in several depen-

encies and hence were unavoidable. 

http://wilderdom.com/301/Cohensd.xls
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Table 5 

Prior exposure and choice of modeling style. 

Prior exposure: Prior exposure: Average percentage corrected Statistical test 

hierarchical style constrained style with group size of 

( n = 41) ( n = 47) prior exposure) 

Count % Count % % X ²df = 1 P ϕ

Model with high choice dependency – basic choices 

Hierarchical 38 93 15 32 60 33 .76 < .001 .62 

Constrained 3 7 32 68 40 

Model with low choice dependency – extra choices 

Hierarchical 18 44 1 2 22 22 .57 < .001 .51 

Constrained 23 56 46 98 78 

Table 6 

Choice of modeling style and correctness of models. 

Hierarchical modeling style Constrained modeling style Statistical test 

M/count SD/% M/count SD/% T df = 86 p Cohen’s d 

High choice dependency – basic choices 

( n = 53) ( n = 35) 

Correctness 

Choices .99 .04 .98 .11 .37 .71 –

Dependencies .58 .38 .75 .31 2 .31 .02 −.49; small effect 

Overall .82 .16 .89 .17 1 .82 .07 .43; small effect 

Subjective difficulty 2 .85 1 .10 2 .61 1 .40 .89 .38 –

Low choice dependency – extra choices 

( n = 19) ( n = 69) 

Correctness 

Choices .93 .09 .98 .06 −2 .24 .04 −.75; moderate effect 

Dependencies .57 .34 .73 .22 −1 .92 .07 −.65; moderate effect 

Overall .80 .17 .89 .09 −2 .26 .04 −.82; large effect 

Subjective difficulty 3 .11 .99 2 .72 1 .51 1 .05 .30 –
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We further note that the constrained modeling style had a pos-

itive influence on correctness of dependencies in both situations

(although the difference is statistically significant at the α= .05

level only in the model with high choice dependency). Overall, we

deem hypothesis H5 to be rejected: the use of a constrained mod-

eling style results in higher model correctness for both models.

Concerning subjective modeling difficulty, we did not find any sig-

nificant difference – whether hierarchical or constrained modeling

style was chosen – and thus H5 was not supported by subjective

measures either. 

6. Discussion 

This study set out with the aim to examine hierarchical and

constrained styles in variability modeling. A main finding of this

study is that differences in comprehension and selection of a spe-

cific modeling style depend on choice interdependency. While for

a high choice dependency situation, the hierarchical style was eas-

ier to understand and also chosen more often to create a model,

for a low choice dependency situation the constrained version per-

formed better in terms of comprehension effectiveness and effi-

ciency and was also chosen more frequently to model. Table 7

summarizes the hypotheses testing results. In line with our predic-

tions, these combinations of modeling style and choice interdepen-

dency led to a lower number of occurrences of the (non-abstract)

choices in the models and thus a lower element-interactivity ef-

fect, which would have heightened cognitive load. This is also re-

flected in additional analyses based on comprehension question

type (see Appendix E ): question-based redundancy of choices was

in general higher for the model with high choice dependency in

the constrained style and for the model with low choice depen-

dency in the hierarchical style. The constrained modeling style out-
erformed the hierarchical style for comprehension questions that

ead to much lower redundancy in the constrained style, but not

n case it leads to equal or higher redundancy. Thus, it seems that

he effect of element-interactivity was more important than the ef-

ect of split-attention between textual constraints and the graph-

cal model in the constrained modeling style. If the negative ef-

ect of the split-attention effect would have been very strong, both

odels should have been easier in the hierarchical style. 

Our results show that the level of choice interdependency has

n impact on what style should be applied in order to obtain the

ost comprehensible model. They further indicate that the selec-

ion of the modeling style depends on the degree of dependency.

here seems to be a common understanding of modelers as to

hen to use the different modeling styles, which can be seen by

ow modelers “naturally” chose different styles for different levels

f choice interdependency (controlled for their tendency to choose

he style they were exposed to earlier). 

However, we found two exceptions from this overall pattern,

hich we discuss below. First, the hierarchical modeling style was

ubjectively rated to be easier in both models. Second, we did

ot find that applying the appropriate modeling style to a spe-

ific choice interdependency situation would result in better model

uality in any of the two models, as models in the constrained

odeling style had fewer errors. 

Regarding the subjective model comprehension of the hierar-

hical modeling style, participants interestingly rated it higher for

oth models. Prior research has demonstrated that preference for

 representation format might not always correspond to perfor-

ance in using the representation [14] . While objective compre-

ension values were lower for the hierarchical model in the ex-

ra task (low choice interdependency), users still rated the com-

rehensibility higher. This result is in line with hypothesis 1,
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Table 7 

Summary of hypothesis testing results. 

Hypothesis Dependent variable Results 

H1. The modeling style influences comprehension 

of variability models. 

H1a. Comprehension 

effectiveness 

Supported. The constrained modeling style leads to less comprehensible 

models. There is a significant disordinal (crossover) interaction effect 

of dependence index and modeling style. 

H1b. Comprehension efficiency Not supported. 

H1c. Perceived ease of use Supported. The constrained modeling style leads to lower subjective 

model comprehension. 

H1d. Subjective difficulty of 

model 

Supported. The constrained modeling style leads to higher subjective 

difficulty. 

H2. There is an interaction effect between the 

choice interdependency (as specified by the 

dependence index) and the modeling style, 

influencing model comprehension. 

H2a. Comprehension 

effectiveness 

Supported. Participants achieved a higher comprehension of the model 

with high dependency in the hierarchical style, while they understood 

the model with low dependency better in the constrained style. 

H2b. Comprehension efficiency Supported. Participants took less time for answering questions for the 

high dependency model in the hierarchical style, and took less time 

for answering questions for the low dependency model in the 

constrained style. 

H2c. Perceived ease of use Supported. The relative higher rating of perceived ease of use of the 

hierarchical model style is more prominent for the case of low 

dependency than for the case of high dependency. 

H2d. Subjective difficulty of 

model 

Not supported. 

H3. Prior exposure to a modeling style in examples leads to a higher 

subsequent use of this modeling style. 

Partly supported. The effect is clear for the combinations of basic model 

(high choice interdependency) ×hierarchical modeling style and extra 

model (low choice interdependency) ×constrained modeling style; 

while in the other two combinations switches occur. 

H4. The choice interdependency (as specified by the dependence index) 

influences the choice of modeling style. 

Supported. Hierarchical style was chosen more often for the model with 

high choice dependency, the constrained style was chosen more often 

for the model with low choice dependency. 

H5. There is an interaction effect between the 

choice interdependency (as specified by the 

dependence index) and the modeling style, 

influencing the quality of the created models 

and the perceived difficulty. 

H5a. Model correctness Not supported. The constrained modeling style results in higher quality 

models for both models. 

H5b. Subjective difficulty Not supported. 
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hat the modeling style affects comprehension: the results suggest

hat users perceive the split-attention effect between textual con-

traints and model more strongly than the element interactivity

ffect of repeated choices in the hierarchical modeling style; thus

hey rate comprehensibility lower for the constrained models. 

There could be several different interpretations of the higher

ubjective comprehension of the hierarchical modeling style. The

esults could be interpreted in light of the “hidden dependencies”

users might have had the impression that there were more hid-

en dependencies based on combinations of constraints in the con-

trained model, while in the hierarchical model such dependen-

ies could have been easier to recognize. Haisjackl et al. [30] re-

ort a similar effect in the area of declarative process models –

hat “hidden dependencies” based on combinations of constraints

re a challenge for model comprehension. Another possible inter-

retation of the higher subjective comprehension of the hierarchi-

al modeling style can be derived from the ontological literature.

extual constraints (especially those in the form “not (A and B)”)

resumably have a similarity to the ontological construct “negated

roperty – a property a thing does not possess.” [ 8 , p. 387]. Bodart

t al. [8] argue that humans do not easily perceive such properties.

hus, models expressed in the constrained modeling style (includ-

ng such constraints) might be experienced as being more difficult

han hierarchical models that visualize all possible options. 

As to why modeling in the constrained modeling style leads to

igher model quality independent of the choice interdependency,

ifferent arguments can be used, e.g., textual constraints can di-

ectly be taken from the natural language description or separating

oncerns in graphical and textual parts helps modelers to model

orrectly. In contrast to the comprehension of existing CVL models

creating constrained CVL models seems to be less error-prone 
han is creating hierarchical CVL models. The user can first cre-

te a redundancy-free hierarchical model of the choices and then

dd missing constraints as textual additions. The split-attention ef-

ect is less likely to happen if the task is performed in a sequen-

ial, rather than in a parallel, order, as in the comprehension task.

he results may also be caused by a similarity of the constrained

odeling style with other widespread visualizations that employ

redundancy-free” node-link diagrams, in which each concept is 

nly mentioned once, e.g., concept maps [21] . 

We are aware that we cannot give a definite answer as to

hy the constrained modeling style proved to be more effective in

erms of quality of the resulting models. In future investigations,

e encourage the exploration of the “process of variability model-

ng,” e.g., by tracking modeling steps by the editor and analyzing

hem as has been done in other modeling areas. Such data would

elp clarify why modeling in a constrained way seems to be more

eneficial than comprehending models in a constrained modeling

tyle [67] . 

Our results further indicate that for relatively inexperienced

sers, as in our sample, it is easier to get models right using the

onstrained style; nevertheless, the hierarchical style is easier to

omprehend from a subjective point of view. We thus postulate

hat it may be worthwhile to put extra effort into making a hierar-

hical model, since it would be better understood in the sequel. It

ay also be the case that with more experience, variability mod-

lers would be more inclined to use the hierarchical style. 

Our results further indicate that the choice of the modeling

tyle depends not only on the degree of dependency, but also on

he prior exposure of the modelers to modeling styles. Visual ex-

mple models may have a possible constraining effect and lead

o inappropriate models, because modelers adhere to them. How-
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ever, we observed that modelers did not blindly adhere to given

examples, but adapted to the specific circumstances of the given

choice interdependency. Half of the participants presented with hi-

erarchical style models first, switched to the constrained modeling

style for modeling a low dependency modeling situation. In gen-

eral, prior exposure seems to be stronger for the constrained mod-

eling style than for the hierarchical modeling style, as more par-

ticipants stick to it. A possible interpretation may be that partici-

pants might sense in which style they make fewer errors and per-

form better. Switching to the constrained modeling style therefore

seems to be a wise decision, as models modeled in a constrained

style showed a higher correctness, especially for modeling depen-

dencies, for both models with high/low choice interdependency. 

7. Implications and threats to validity 

7.1. Implications for research 

In terms of research, the current findings add strength to a

growing body of empirical work that supports the cognitive load

theory in the conceptual modeling field. The fact that the appro-

priateness of a modeling style is highly dependent on the choice

interdependency can also be seen as an extension of the cogni-

tive fit theory, which postulates that cognitive fit between the

task type and the information emphasized in the representation

leads to more effective and efficient problem solving. Thus, even

for one and the same task (as model comprehension tasks), dif-

ferent representations may be beneficial, depending on the in-

herent structure of the information to be represented. Of course,

there are many more aspects of extrinsic cognitive load that the

present study has not looked into. These range from presentation

medium (paper versus computer), over primary notation (other

notations rather than CVL), notational characteristics as semantic

transparency and perceptual discriminability of symbols and sec-

ondary notation −related to aspects not formally defined −as the

use of decomposition into sub-models, color highlighting or lay-

out of the model and the labels. When modeling in a tool, also

usability aspects are relevant. These general variables, relevant to

any type of conceptual model, were held constant for experimen-

tal purposes to determine the effect of the variables that are of

specific interest to variability modeling. 

The study also took a look at whether a split-attention ef-

fect (between textual constraints and graphical modes) would

be stronger than an element-interactivity effect (caused by re-

dundantly modeled choices). In our experiment, the element-

interactivity effect was stronger. However, caution must be applied

when generalizing the result we obtained, because we used only

two different models. Furthermore, it was not possible to com-

pare comprehension questions according to their degree of split-

attention effect, because all questions lead to a split-attention be-

tween model and text in the constrained modeling style. There-

fore, to meaningfully examine the strength of split-attention ef-

fects in this context, we advise fellow scholars to systematically

construct comprehension questions (similar to e.g. [25] ) varying

the existence and strength of a split-attention effect. Future re-

search on cognitive load effects for conceptual models is advised.

Turetken et al. [74] have for instance investigated such effects in

decomposition of models and hierarchical structuring. They re-

ported no evidence of increased comprehensibility from using ab-

straction (which would aid comprehension); on the contrary, tasks

that required information from sub-processes were answered bet-

ter when this information was not hidden (and, thus, no split-

attention effect, which would lower comprehension, could occur).

While the results cannot be compared to the present study, they

also demonstrated that it would be important in the future to col-

lect data on more modeling cases to be able to specify tradeoff
urves between competing positive and negative cognitive load ef-

ects on comprehension. 

Our study further shows a high conformance with prior model

xamples in terms of modeling style when creating a new model.

his study thus extends research on fixation effects in design tasks,

hich have predominately been examined in architectural or me-

hanical design tasks [13,36,66] to the area of conceptual model-

ng. 

While choosing a constrained modeling style leads to higher

uality of resulting models, it was somewhat surprising that mod-

ls in the constrained modeling style were judged to appear less

omprehensible. This finding suggests that results of model com-

rehension tasks cannot necessarily be transferred to model cre-

tion tasks and vice versa, and researchers have to exercise cau-

ion when generalizing results in cases where only one task type

model comprehension vs. model creation) is considered. 

.2. Implications for practice 

The study presented in this paper has implications for modeling

ractice and is of direct practical relevance. First, the results pro-

ide indication that modeling dependencies is difficult when repre-

enting variability. This result is in-line with the findings of Berger

t al. [7] , according to which the proportions of dependencies in

ndustrial models are relatively low. Modeling tools may support

sers by providing them with simulation of variability for a speci-

ed model (e.g., by representing the valid configurations). This may

lso help modelers to avoid modeling errors which occurred more

ften in the hierarchical modeling style. Similar to contemporary

heories on human semantic memory [47] , future research on vari-

bility modeling could also explore higher dimensional (more than

-D) models in which configurations serve as nodes and similarity

onnection weights as relations between them. Prior research has

lready presented a proposal to visualize large feature trees in 3D

o avoid scrolling [73] . As soon as models reach a certain size, it

lso becomes important that tools support users to orientate and

avigate through model structures and help them mentally inte-

rate information. Various visualization strategies for displaying hi-

rarchical model structures and interface strategies to navigate be-

ween details and their context have been investigated for different

ypes of conceptual models [24,42] . Examples include ‘focus and

ontext’ vs. ‘overview and detail strategy’, or interaction strategies

or multiple views (e.g., if items are selected in one view (“brush-

ng”), they are simultaneously selected and highlighted in the other

iew (“linking”)). Future research could address how such visual-

zation opportunities can be used to support users when interact-

ng with variability models in tools. In addition, adaptation of vi-

ualizations to specific user groups might be pursued. 

Second, the results reinforce the importance of providing good

eaching examples. The choice of examples in tutorials and courses

s relevant, as they influence students’ modeling behavior. A fixat-

ng, suboptimal example can act as a barrier and be counterpro-

uctive to a good model design. 

Finally, Table 8 presents the effects of the modeling styles on

odel comprehension and model creation, based on our experi-

ental results. These effects should be acknowledged when creat-

ng variability models either manually or automatically (via tools).

ur advice would be to apply constraint-oriented style when cre-

ting variability models acknowledging that the hierarchical style

as higher risk of errors. However, once the variability model is

easonably established and it is clear that the situation has high

hoice interdependency there would be comprehension advantages

o moving the model into a hierarchical style. Tools should support

his transformation, but no such automatic tool exists, yet. Exist-
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Table 8 

Effects of modeling styles, based on our experimental results. 

Task Dependency Modeling style Effect 

Model comprehension Low/high Hierarchical • Easier to understand 

• Lower subjective difficulty 

• Higher perceived ease of use 

Low Constrained • Less errors 

• Less time 

High Hierarchical • Less errors 

• Less time 

Model creation Low/high Constrained • Higher correctness 

Low Constrained • A common choice 

High Hierarchical • A common choice 
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ng tools such as Feature IDE 7 provide syntactic support for the

ariability model notation, and analysis of what configurations are

llowed. Commercial products like pure::variants 8 also may pro-

ide support for generating the variants (final products) and inte-

rate smoothly with the development environment their customers

ave, but this is not focused on comprehension as such. 

.3. Threats to validity 

There are a number of limitations associated with our experi-

ents that need to be acknowledged. We discuss these limitations

ext and elaborate on the actions taken to reduce them. 

The main sources of weakness to external validity include sub-

ects and materials. Although the participants were students with

ittle experience in modeling, they had the required knowledge and

raining; thus, we believe that they serve as an adequate proxy for

uture modelers of variability modeling in general, and CVL in par-

icular. The use of students in experiments similar to ours – not

esigned for experts – is deemed to be acceptable [41] . Moreover,

ne should clearly bear in mind that collecting close to a hundred

olunteering experts or experienced variability engineers to con-

uct such an experiment would be prohibitively impractical. An-

ther problem with such a sample would be a possible bias to-

ards one modeling style. Therefore, we deemed it more impor-

ant to keep the effect of industry experience constant (viz. low).

his decision is also reflected by the warning of Gemino and Wand

 27 , p. 258] that “it is important to recognize that the use of either

experienced’ analysts or ‘real’ stakeholders who are very familiar

ith the application domain, while seemingly providing more re-

listic conditions, might create substantial difficulties in an experi-

ental study.”

As for the materials used in our experiment, we can encounter

hreats with respect to models, tasks, the modeling language (CVL),

nd the tools. Our experiment did use rather small models, and it

ould be argued that they do not reflect industrial size problems.

he tasks needed to be manageable within reasonable time. Even

ith students, there was a limit as to how complex we could make

he task. However, the comprehension tasks contained the com-

lexities that we wanted to investigate. With respect to the mod-

ling task, even though the problem description may seem sim-

le, there were hardly any identical solutions in our sample of cre-

ted models. We were surprised by the diversity even for seman-

ically correct models, an observation that also supports the need

or good style guidelines. Industrial product lines show the same

ind of complexities, and although the number of choices will be

arger, there are often only more variants per choice, which should

ot greatly affect the decision on style. Concerning model compre-

ension, studies have indeed shown that there is an overall neg-

tive correlation between higher model size and comprehension
7 http://wwwiti.cs.uni-magdeburg.de/iti _ db/research/featureide/ . 
8 http://www.pure-systems.com/products/pure-variants-9.html . 

f  

i  

c  

s  
55,62] . While we expect this variable to be an additional inde-

endent variable adding to higher intrinsic cognitive load, we do

ot expect it to interact with the modeling style. 

Despite the clear support for the hypothesized associations, the

eneralizability of findings reported here should be undertaken

ith caution, as we could only include two different models in the

tudy and we selected a specific variability modeling language –

he variability abstraction part of CVL. Moreover, we used a model-

ng language in which dependencies are expressed in textual con-

traints and not visually. Visual representation of the dependencies

ould influence comprehensibility and hence deserve further ex-

loration in the future. As the two models included in the compre-

ension part and the modeling task were typical representatives,

e argue that they provided a reasonable test of comprehensibil-

ty, thus assuring construct validity. The selection of the language

as done perceiving CVL as an emerging standard that systemat-

cally includes the main variability modeling concepts. Regarding

tandardization, the CVL submission to the OMG was technically

ecommended, but has not yet been made an OMG technology due

o controversies over an American patent and its consequences re-

ating to future commercial tooling for CVL. 

With respect to tooling, we applied only one tool in the experi-

ent, and one could imagine that the tool could be biased in favor

f one of the modeling styles. The CVL tool used requires that the

iagram is built top down, and this could indicate favoring a hi-

rarchical style, but applying a constrained style would only mean

hat the hierarchy would be shallow. We did not include in our

xperiments any procedures that would control for this potential

ild favoring of the hierarchical style. 

To improve conclusion validity, we were assured that random

nfluences to the experimental setting were low. First, participants

ere committed to the experiment by giving course credit (of

bout 5%) for participation. Second, the students self-studied CVL,

nd although conducted in different classes, no influence of the

ecturers’ capabilities, knowledge, and opinions were introduced to

he CVL training. 

Although the time taken to complete the whole modeling task

as monitored, we could not relate it to the modeling style (as

ommonly different parts of the model were specified following

ifferent modeling styles), nor to the choice interdependency, be-

ause participants did work on both basic and extra choices at the

ame point in time. Thus, we did not include modeling efficiency

n the second research model on model creation. Further research

ight also look at efficiency of creating models in different styles. 

. Conclusions and future research 

The present study was primarily designed to determine the ef-

ect of modeling style on comprehension and creation of variabil-

ty models. We further took the choice interdependency into ac-

ount as an influence factor. Our results are not surprising, as they

how that hierarchical (tree) structures are useful in suitable situ-

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://www.pure-systems.com/products/pure-variants-9.html
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ations. This obviously was the belief motivating the original FODA

approach to define feature trees. Still, our results indicate that ex-

pressing constraints through hierarchy is not always the most com-

prehensible option that modelers currently believe it is. The re-

sults showed that the degree of dependency between choices in a

model determines what modeling style will be selected when cre-

ating a model from natural language descriptions. Furthermore, the

degree of dependency between choices also influences the compre-

hension of the model. Models with high dependency are best un-

derstood with hierarchical models, while models with low depen-

dency fit the constrained style. However, modeling in a constrained

style leads to fewer modeling errors, independent of the choice in-

terdependency. Thus, while it is more difficult to create hierarchi-

cal models, they offer the advantage of higher subjective user ac-

ceptance and better comprehension when the model is character-

ized by high dependency of choices. Summarizing, our study pro-

vides further evidence for the utility of cognitive load theory to

aid our understanding of cognitive difficulties in variability model-

ing. These results can be used to generate teaching materials and

modeling guidelines. 

Another interesting finding was that modelers tended to con-

form to modeling styles to which they had been previously ex-

posed. However, they did not blindly adhere to these styles, for
nstance, it occurred more often that they switched from a hierar-

hical style to a constrained style, rather than vice versa, and their

ecision of the modeling style was further influenced by the choice

nterdependency. 

Overall, our work denotes an extension to the literature on cog-

itive aspects of conceptual models for the field of variability mod-

ling, and may ultimately lead to more successful variability mod-

ling and more comprehensible models for managing product lines

n practice. 

Several opportunities for future research emerge from our

tudy. Particularly, further experimental investigations with a

arger variety of models and different types of participants would

e required to give a final estimation of the comprehension diffi-

ulty of different degrees of choice interdependency. Future studies

ould also extend this work and examine difficulties in compre-

ending and modeling variability using other languages, as well as

he variability realization part of CVL. Finally, further investigation

nd experimentation with other modeling styles, their ways of ex-

racting and organizing choices into models, and their implications

n comprehension and modeling would be interesting towards a

ore integrated understanding of cognitive aspects of variability

odeling. 
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A

(a)

(b)

es of Skoda Yeti cars: (a) hierarchical style and (b) constrained style. 
ppendix A. The second model used in the experiment. 

Fig. 5. CVL models specifying the variability within extra choic
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odel. 

in Fig. 1 . 

3 4 5 6 

T T 

T T 

T T 

T T 

T T 

T T 

T T 

T T 

ted. 

icted in Fig. 1 . 

tomatic 2-wheel-drive 4 × 4 Active Adventure 

3 3 2 3 

3 3 3 3 

4 4 4 4 

4 4 4 4 

X 2 3 3 

X 3 3 

X 2 

X 

91 

112 

0.81 

: 

rrect Wrong Cannot be answered from model I do not know 

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

: 

Correct Wrong Cannot be answered from model I do not know 

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

 ◦ ◦ ◦ ◦
e ◦ ◦ ◦ ◦
Appendix B. Calculation of the dependence index for the first m

Table 9 

Possible configurations for the model depicted 

Configuration → 

Choice ↓ 1 2 

Diesel T T 

Benzin 

Manual T T 

Automatic 

2-wheel-drive T 

4 × 4 T 

Active T T 

Adventure 

T – choice selected, empty – choice deselec

Table 10 

Calculation of the dependence index for the model dep

Choice A → 

Choice B ↓ Diesel Benzin Manual Au

Diesel X 2 4 4 

Benzin X 4 4 

Manual X 2 

Automatic X 

2-wheel-drive 

4 × 4 

Active 

Adventure 

Sum 

Max potential sum 

dependence index 

Appendix C. Comprehension tasks. 

“Basic” model: 

A Skoda Yeti car can have the following combination of features

Co

1 . Manual and diesel ◦
2 . Adventure and benzin ◦
3 . Automatic and 4 × 4 ◦
4 . Adventure and 2-wheel-drive ◦
5 . Active and diesel and automatic ◦
6 . Diesel and automatic and 4 × 4 ◦
7 . Active and benzin and 4 × 4 ◦
8 . Adventure and manual and 4 × 4 ◦
9 . Active and benzin and manual and 2-wheel-drive ◦

10 . Automatic and adventure and benzin and 2-wheel-drive ◦

“Extra” model: 

A Skoda Yeti car can have the following combination of features

1 . Parking-heater and styling-package 

2 . Panorama-roof and offroad-styling 

3 . Parking-heater and offroad-styling 

4 . Parking-heater and heated-front-pane 

5 . Parking-heater and styling-package and offroad-styling 

6 . Sunset and parking-heater and styling-package 

7 . Heated-front-pane and sunset and panorama-roof 

8 . Sunset and panorama-roof and parking-heater and offroad-styling 

9 . Heated-front-pane and sunset and styling-package and offroad-styling

10 . Heated-front-pane and sunset and panorama-roof and styling-packag
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ppendix D. The modeling task. 

Task description: Skoda Yeti Laurin and Klement 

Skoda has a top-of-the-range edition called Laurin and Klement

amed after the two founders of Skoda, namely, Vaclav Laurin and

aclav Klement. 

Our modeling task focuses on this top-of-the-range edition and

n its diesel cars . 

These cars come with automatic as well as manual gearbox, but

hen it is automatic, only the 4 × 4 drive and a 140 hp engine are

ossible. If the customer opts for a two-wheel drive, s/he must

hoose the manual shift and a 110 hp engine. The manual shift

nd the 4 × 4 drive give the alternatives of both engines (140 hp

r 110 hp). 

The Laurin and Klement range offers as default a lot of luxury

eatures, but there are still some features that may be selected as

xtras. The customer can choose parking assistant, backing sensor,

ouble trunk floor or extra wheel. However, choosing the parking

ssistant excludes choosing the backing sensor. 

ppendix E. Supplementary analyses. 

.1. Sub samples 

To check whether the type of sub sample used influences our

esults, we ran some analyses where the sub sample was defined

s an additional independent variable. As noted we had four dif-

erent courses from three universities in our study. As we had

sed randomization of questionnaires, experimental groups were

pproximately evenly spread over all sub samples. The results

f these analyses are summarized in Table 11 and differences of

ourses are depicted in Fig. 6 . 

Adding this new independent variable “sub sample” slightly al-

ers a few results. As would be expected the significance level of
able 11 

n overview of the results of the ANCOVAs for repeated measures. 

Effect 

Comprehension effectiveness (total score) Sub sample (course) 

Modeling style 

Choice interdependency choice interdependency

Experimental order 

Familiarity with feature modeling 

Choice interdependency ∗ experimental order 

Choice interdependency ∗ familiarity with featu

Choice interdependency ∗ modeling style 

Comprehension efficiency (time) Sub sample (course) 

Modeling style 

Choice interdependency 

Experimental order 

Familiarity with feature modeling 

Choice interdependency ∗ experimental order 

Choice interdependency ∗ familiarity with featu

Choice interdependency ∗ modeling style 

Perceived ease of use Sub sample (course) 

Modeling style 

Choice interdependency 

Experimental order 

Familiarity with feature modeling 

Choice interdependency ∗ experimental order 

Choice interdependency ∗ familiarity with featu

Choice interdependency ∗ modeling style 

Subjective difficulty of model Sub sample (course) 

Modeling style 

Choice interdependency 

Experimental order 

Familiarity with feature modeling 

Choice interdependency ∗ experimental order 

Choice interdependency ∗ familiarity with featu

Choice interdependency ∗ modeling style 
he variable familiarity with feature modeling was reduced and

ow is insignificant. This can be explained by the different amount

f education and training on feature modeling at the different uni-

ersities, which likely leads to differences in self-reported familiar-

ty. The sub-sample was a significant influence factor for compre-

ension efficiency (time) and subjective difficulty of model. Stu-

ents of the business modeling course in Vienna took less time for

olving the tasks than the other groups and rated the models as

ore difficult, while the students of the software modeling course

n Haifa took most time and rated the models as easiest. It seems

ossible that the lower time taken is due to “cognitive stopping

ules”, which researchers have speculated to lead to minimizing

ffort in comprehension tasks if tasks are experienced as too dif-

cult to solve [23] . Overall, the results for the courses are in line

ith the assessment of the researchers that the course in Haifa,

hose students received the highest total score on average (87%),

repared students very well in terms of variability modeling, while

or the students of the business modeling course in Vienna vari-

bility modeling was a completely new field and they performed

orst (75%). Due to randomization of experimental conditions, the

ffects of other influence factors did not change in any relevant

ay (only slight shifts in decimal places, not a change in signifi-

ance of effects.) 

.2. Comprehension question type 

In a separate analysis, we took a detailed look at the type of

omprehension question. To do so, we counted for each compre-

ension question how often the choices it referred to were men-

ioned in the model in the hierarchical style (respectively in the

odel and the textual constraints in the constrained style). In a

econd step, we subtracted the number of occurrences of choices

n the constrained version from the hierarchical model version, re-

ulting in a “redundancy” measure per comprehension question.
F ( df Hypothesis = 84; df Error = 1) Significance Partial eta squared 

n.s. 

4.08 .05 .05 

 n.s. 

n.s. 

2.85 .10 .04 

4.82 .03 .06 

re modeling n.s. 

37.82 < .001 .32 

10.27 .00 .28 

n.s. 

3.62 .06 .07 

n.s. 

n.s. 

32.76 < .001 .29 

re modeling n.s. 

43.46 < .001 .35 

n.s. 

24.38 < .001 .23 

n.s. 

n.s. 

n.s. 

n.s. 

re modeling n.s. 

6.35 .004 .10 

2.84 .04 .10 

4.36 .04 .05 

n.s. 

n.s. 

n.s. 

n.s. 

re modeling n.s. 

n.s. 
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(a)
(b)

(c) (d)

81%

70%

75%

83%
82% 83%82%

85%
84%

91%

83%

87%

50%

60%

70%

80%

90%

100%

High Choice

Interdependency

Low Choice

Interdependency

Total

Comprehension Effectiveness (Total Score)

Course 1 (business modeling, Vienna) Course 2 (software modeling, Vienna)

Course 3 (software modeling, Oslo) Course 4 (software modeling, Haifa)

04:17
04:31 04:24

03:01

04:43

03:52

05:03

06:35

05:49
05:35

07:50

06:43

00:00

02:24

04:48

07:12

High Choice

Interdependency

Low Choice

Interdependency

Total

Comprehension Efficiency (Time)

Course 1 (business modeling, Vienna) Course 2 (software modeling, Vienna)

Course 3 (software modeling, Oslo) Course 4 (software modeling, Haifa)

4.94
4.70

4.82

5.37

4.98
5.185.26

5.12 5.19

5.79

5.44
5.62

1

2

3

4

5

6

7

High Choice

Interdependency

Low Choice

Interdependency

Total

Perceived Ease of Use

Course 1 (business modeling, Vienna) Course 2 (software modeling, Vienna)

Course 3 (software modeling, Oslo) Course 4 (software modeling, Haifa)

3.56 3.55 3.56

2.94
3.08 3.01

2.74 2.75 2.74

2.11

2.47
2.29

1

2

3

4

5

6

7

High Choice

Interdependency

Low Choice

Interdependency

Total

Subjective Difficulty of Model

Course 1 (business modeling, Vienna) Course 2 (software modeling, Vienna)

Course 3 (software modeling, Oslo) Course 4 (software modeling, Haifa)

Fig. 6. Results for model comprehension: (a) comprehension effectiveness (total score), (b) comprehension efficiency (time), (c) perceived ease of use, and (d) subjective 

difficulty of model. 

Table 12 

An overview of the results of the ANOVAs. 

Hierarchical ( n = 43) Constrained ( n = 47) Total ( N = 90) Statistical test 

M (%) SD M (%) SD M (%) SD 

Model with high choice dependency – basic choices 

Much higher redundancy in constrained style (4–6) 98 0.09 86 0.28 91 0.22 F df = 88 = 6.89; p = 0.010 

Higher redundancy in constrained style (2) 92 0.14 66 0.32 79 0.28 F df = 88 = 25.22; p = 0.0 0 0 

Equal redundancy (0) 97 0.10 73 0.30 84 0.26 F df = 88 = 24.73; p = 0.0 0 0 

Model with low choice dependency – extra choices 

Equal redundancy (0) 95 0.21 83 0.38 89 0.32 F df = 88 = 3.54; p = 0.06 

Lower redundancy in constrained style ( −1, −2) 83 0.24 88 0.19 86 0.22 F df = 88 = 1.04; n.s. 

Much lower redundancy in constrained style ( −3, −4, −5) 67 0.26 80 0.22 74 0.25 F df = 88 = 6.56; p = 0.01 

98% 92% 97%
95%

83%
67%

86%

66%

73%

83%

88%

80%

0%

20%

40%

60%

80%

100%

120%

Much Higher

Redundancy in

Constrained

Style

Higher

Redundancy

Equal

Redundancy

Equal

Redundancy

Lower

Redundancy

Much Lower

Redundancy in

Constrained

Style

High Choice Dependency Low Choice Dependency

Analysis based on Comprehension Question Types

Hierachical

Constrained

Fig. 7. Redundancy in comprehension question types and comprehension effectiveness. 
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e grouped questions according to this “redundancy” measure

nto 3 groups per model (model with basic/extra choices), respec-

ively. The question-based redundancy was in general higher for

he model with high choice dependency in the constrained style

nd for the model with low choice dependency in the hierarchi-

al style. Fig. 5 and Table 11 show an interesting result. It seems

hat the constrained style outperformed the hierarchical style for

omprehension questions that lead to much lower redundancy in

he constrained style. In such cases, in which the constrained style

eads to equal or higher redundancy, comprehension effectiveness

as lower in the constrained style. 
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